WWW.BOOK.LIB-I.RU
БЕСПЛАТНАЯ  ИНТЕРНЕТ  БИБЛИОТЕКА - Электронные ресурсы
 
s

«Игорь Шалашников Популярный звездочет Текст предоставлен правообладателем. Шалашников И. Популярный ...»

Игорь Шалашников

Популярный звездочет

Текст предоставлен правообладателем.

http://www.litres.ru/pages/biblio_book/?art=4911984

Шалашников И. Популярный звездочет:Научно-популярная

литература: ООО “Написано пером”; С-Петербург; 2013

ISBN 978-5-00071-095-1

Аннотация

Эта книга посвящена молодым людям, студентам

и школьникам, которых интересуют современные

исследования в области астрономии и астронавтики.

Много открытий в этих областях пришлось на

начало XXI-го века. С течением времени неизбежно совершенствуется техника по изучению небесных тел.

Космическое пространство предстает перед учеными во все больших подробностях. Человек путешествует на околоземные орбиты, планирует совершить путешествие на Марс и освоить Луну, как базу для дальнейшего изучения космического пространства. В этой небольшой книге представлены все самые интересные и свежие материалы, связанные с подобными исследованиями.

Содержание Вступление 6 Начало Вселенной. Версия о Большом 12 взрыве Солнце, и какие бывают звезды 18 Виды звезд 22 Созвездия 27 Скрытое вещество Гало 32 Обзор планет Солнечной системы. 34 Меркурий Обзор планет Солнечной системы. Венера 36 Обзор планет Солнечной системы. Луна 40 Обзор планет Солнечной системы. Марс 43 Обзор планет Солнечной системы. Юпитер 47 Обзор планет Солнечной системы. Сатурн 51 Обзор планет Солнечной системы. Уран 55 Обзор планет Солнечной системы. Нептун 57 Обзор планет Солнечной системы.

Плутон 60 Обзор тел солнечной системы. Астероиды 63 и карликовые планеты Обзор тел Солнечной системы. Кометы 67 Метеориты и метеоры 69 Немного о названиях планет и других тел 71 солнечной системы. Мифология Меркурий 71 Венера 73 Марс 75 Юпитер 77 Многообразный Юпитер 78 Сатурн 79 Уран 80 Нептун 81 Плутон 82 Способы изучения космоса. Телескопы. 83 История возникновения Конец ознакомительного фрагмента. 87 Игорь Шалашников Популярный звездочет www.napisanoperom.ru Все права защищены. Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения правообладателя.

© И. Шалашников, 2014 © ООО «Написано пером», 2014 Вступление Эта книга посвящена молодым людям, студентам и школьникам, которых интересуют современные исследования в области астрономии и астронавтики.

Много открытий в этих областяхпришлось на начало XXI века. С течением времени неизбежно совершенствуется техника по изучению небесных тел. Космическое пространство предстает перед учеными во все больших подробностях. Человек путешествует на околоземные орбиты, планирует совершить путешествие на Марс и освоить Луну как базу для дальнейшего изучения космического пространства. В этой небольшой книге представлены все самые интересные и свежие материалы, связанные с подобными исследованиями.

Еще с древних времен небо притягивало человека своей загадочностью. Людей интересовал небосвод как способ ориентирования в пространстве (на местности) и во времени (смена времен года). Ориентированием по звездам в своих профессиях пользовались охотники, скотоводы, земледельцы и рыболовы.

Астрономия послужила к созданию различных календарей, которые основывались на положении Солнца, Луны и звезд на небе. В разных культурах существовали разные календари. В Древней Греции, например, в каждом городе был свой календарь со своими названиями и времяисчислением.

Астрономические знания накапливались тысячелетиями. Во все эпохи можно отметить великие имена, которые повлияли на астрономическую науку. В древние времена это были Аристарх, Плутарх, Клавдий, Птолемей. Все они были новаторами, и их теории, суть которых была верна, переворачивали представления науки астрономии.





Среди знаменитых имен Средних веков значатся астрономы Николай Коперник, Галилео Галилей, Иоганн Кеплер, Джордано Бруно, Тихо Браге.

Стоить отметить, что астрономия тесно граничит с геометрией, математикой и физикой. Поэтому, несомненно, великие астрономы были изрядно подкованы и в этих науках.

В Новое время эстафетную палочку в развитии астрономической науки подхватили Исаак Ньютон, Лаплас, Уильям Гершель, Василий Яковлевич Струве и Камилл Фламарион.

В XX веке рывок в развитии астрономии был самым стремительным, так как появилась техника, строились мощные телескопы, в том числе космический телескоп. Появился новый раздел астрономии – астрофизика, в котором проводился всеобъемлющий анализ световых волн.

К числу великих ученых-астрономов XX века можно отнести Альберта Эйнштейна, Артура Эддингтона, Джеймса Джинса, Александра Фридмана, Эдвина Хаббла.

Стоит отметить и тот факт, что астрономам, ученым смежных наук и инженерам в XX веке удалось запустить человека в космос и на Луну. Эти события также будут освещены в этой книге.

Галилео Галилей Исаак Ньютон Эдвин Хаббл Начало Вселенной.

Версия о Большом взрыве Вселенная началась с разлета вещества с огромной скоростью. Но это всего лишь наше предположение. Мы делаем этот вывод, наблюдая за современным поведением Вселенной. Самые дальние галактики отдалены от нас на 13–15 млрд световых лет. Отсюда мы можем заключить, что примерно столько времени назад начался Большой взрыв.

Состояние вещества до Большого взрыва можно оценивать как сверхплотное: оно помещалось в размеры мельчайшей элементарной частицы. А потом началось расширение. Стоит отметить тот факт, что мы не обнаруживаем тел или любых космических структур, возраст которых превышал бы вычисленный срок, протекший с Большого взрыва.

Представить себе состояние вещества до Большого взрыва мы не в состоянии. Это все равно как если представить, что было до начала времени, потому что того состояния пространства и времени, скорее всего, не существовало. К тому же некоторые теории склоняются к факту, что пространство было не трехмерным, а более многомерным. Предположим, оно было шестимерным или семимерным. Но как оно выглядело? На каком принципе оно существовало? Лучшие умы человечества, возможно, могут понять это, но объяснить это простому человеку, какими являемся мы с вами, они не в состоянии. Но здесь лежит потенциал и для вас! Займитесь этим вопросом… Может, вам улыбнется удача, и вы сможете понять непонятное и объяснить необъяснимое.

О галактиках Млечный Путь и Андромеда. Классификация галактик.

Наша Солнечная система, состоящая из звезды по имени Солнце, девяти планет, их спутников, пыли, астероидов и комет, входит в галактику Млечный

Путь. Наша галактика имеет колоссальные размеры:

чтобы пролететь от края до края галактики, свету (!) потребуется около 100 тыс. лет… Так, наблюдая в телескопы звезды или даже невооруженным глазом ночное небо, мы видим некоторое прошлое тех небесных тел, которые предстают перед нами. Например, солнечный свет проходит расстояние до Земли за 8 минут. А свет звезд, которые удалены от нас намного больше, может проходить до нас несколько тысяч лет. Анализируя скорость света, мы можем представить себе, насколько большими расстояния могут быть от одного космического тела до другого.

Огромная звездная полоса, видимая ночью на небе, относится к галактике Млечный Путь. Расстояние от Солнца до центра нашей галактики примерно 27 700 световых лет.

Центр Млечного Пути называется балджем, он составляет около 8 тыс. парсек1 в поперечнике. В его структуру входит сверхмассивная черная дыра Стрелец А. Возможно, в нее также входит еще одна черная дыра средней мощности. А также в центр галактики входят две перемычки, с которых начинаются рукава.

Так как наша галактика является спиралевидной, она имеет рукава. Наша Солнечная система находится в рукаве Ориона. Среди рукавов можно обозначить также рукав Персея, рукав Стрельца, Внешний рукав, рукав Щита-Центавра, рукав Лебедя. А около центра галактики находятся Дальний и Ближний трехпарсековые рукава. Эти рукава и входящие в их состав звезды и газовые облака закручены в красивую спиралевидную фигуру.

В центре Млечного Пути, оказавшись на какой-нибудь планете, мы бы увидели небесное зарево даже ночью. Это объясняется тем, что в пределах 1000 лет от центра галактики звезды расположены очень плотно. Звезды там могут располагаться в пределах каких-нибудь нескольких световых дней.

(Картинка-схема) Галактика Андромеда, ближайшая к нашей галактике, также является спиралевидной. Ее можно увидеть на небе невооруженным глазом. Она удалена от нас на 2 млн световых лет. Млечный Путь и Андромеда имеют спутники из более мелких галактик. А вместе с галактикой Треугольника они образуют так называемую Местную группу галактик. Движение галактик Местной группы происходит под гравитационным влиянием всех остальных ее членов.

Ближайшая группа галактик к нашей Местной группе называется скопление Девы. Расстояние до него насчитывает 50 млн световых лет. Скопление Девы огромно: оно располагается на небе на участке в 200 раз большем, чем занимает полная луна в ночном небе. Гравитационная сила этого скопления настолько велика, что оно влияет на движение нашей Местной группы: мы медленно движемся в ее сторону.

Эдвин Хаббл классифицировал галактики по трем типам: эллиптические, спиральные и неправильные.

Форма эллиптических галактик напоминает лимон или мяч для регби. Они не имеют рукавов, а их форма измеряется по степени уплощенности буквой E=0…7 (7 имеют галактики наиболее сплюснутые).

Тип спиральных галактик подразделяется на два подтипа: пересеченные спирали и нормальные спирали. Пересеченные спирали имеют перемычку, с которых начинаются рукава, а у галактик с нормальными спиралями рукава начинаются прямо из центра.

Галактики неправильного типа имеют клочковатую форму. Такие галактики содержат много газа (до 50 % от их общей массы).

Все звезды во Вселенной находятся в галактиках.

Между галактиками нет никаких звезд. А сами галактики наклонены друг к другу под разными углами.

1 Единица расстояния, используемая в астрономии; равна 3,2616 светового года Солнце, и какие бывают звезды Солнце является центром Солнечной системы.

Солнце является также источником тепла и света, которые являются необходимыми условиями существования жизни на нашей планете.

Солнце имеет шарообразную форму, состоящую в основном из атомов водорода и гелия. Но также в нем присутствуют и атомы других элементов, таких как кислород, углерод, железо, сера, неон, азот, кремний, магний и некоторые другие. Вокруг раскаленного до 15 000 000 °К солнечного ядра, в котором происходят термоядерные реакции превращения водорода в гелий, находятся зоны циркулярной конвекции и радиационного переноса. К внешним слоям относятся фотосфера, хромосфера и корона.

Толщина фотосферы приблизительно 320 км, а ее температура достигает 5 800 °К, но встречаются и зоны более холодные, с температурой 3 800 °К. Они относятся к так называемым солнечным пятнам, образованным магнитным полем Солнца. К верхним слоям температура фотосферы уменьшается до 4800 °К.

Хромосфера является внешней оболочкой Солнца, она красноватого оттенка и имеет толщину в 10 тыс.

км. Ее поверхность постоянно извергает раскаленные массы и поэтому она не имеет четко выраженной границы. Температура хромосферы колеблется от 4000 °К до 15 000 °К. Ее можно разглядеть только во время солнечного затмения либо в специально оборудованный телескоп.

Солнечная корона простирается на миллионы километров от Солнца. Она имеет температуру от 600 000 до 5 000 000 °К за счет сложного взаимодействия магнитных эффектов. Ее излучение присутствует в рентгеновском и ультрафиолетовом диапазонах. Поскольку она неравномерна, из ее слабых мест, наиболее холодных, вырывается солнечный ветер – поток ионизированных частиц, который образует магнитные бури и полярные сияния на Земле.

В недрах Солнца каждую секунду около 700 млн тонн водорода превращается в 695 млн тонн гелия.

При этом выделяется изрядное количество термоядерной энергии, которая пробирается к поверхности Солнца, поглощается им и производится заново, и в результате вырывается на поверхность как видимый свет.

Вращение слоев Солнца дифференцировано, подобно газовым планетам. Экваториальная зона вращается быстрее полюсов: один оборот она совершает за 25,4 земных суток, в то время как зоны, близкие к полюсам, оборот производят за 36 дней. Спрессованное ядро Солнца тоже имеет свою скорость вращения, она равномерна и выше, чем скорость вращения верхних слоев.

Энергия Солнца является необходимым условием прохождения процесса фотосинтеза в растениях, и, как следствие, выработки кислорода для дыхания живых организмов. Также нефть и газ являются продуктами переработанных органических материалов с помощью процесса фотосинтеза. Солнечная энергия может быть использована солнечными электростанциями для переработки ее в электроэнергию. Ультрафиолетовое излучение используется для дезинфекции воды, различных предметов. С помощью него люди получают загар, и также оно стимулирует выработку витамина D.

Масса Солнца содержит до 99,866 % всей массы Солнечной системы. Его диаметр превосходит земной в 109 раз, а объем в 1 301 000 раз.

My sun is living in my head My sun is joking over my soul-jumping And speaking always All’ll be well And you are man, which is outstanding I try to trust in this and get To get the warm of falling light-rays And understand that need moment When I’m to sit in my that great-place… Виды звезд В сравнении с другими звездами во Вселенной Солнце является звездой-карликом и относится к категории нормальных звезд, в недрах которых происходит превращение водорода в гелий.

Так или иначе, но виды звезд примерно описывают жизненный цикл одной отдельно взятой звезды. Материалом для звезд служат газообразования из молекул водорода и пыли. С течением времени они соединяются и образуют так называемую протозвезду, температура которой имеет тенденцию постоянно повышаться. Когда температура протозвезды достигает отметки возможности проведения ядерного синтеза, она превращается в нормальную звезду. А дальше на развитие звезды главное влияние оказывает ее масса. В зависимости от нее определяется цвет и блеск светила, а также продолжительность его жизни. Яркость звезды определяется с учетом расстояний и может меняться от одной десятитысячной до миллиона Солнц. Если масса звезды не достигает одной двенадцатой массы Солнца, тогда она считается коричневым карликом.

Такие звезды вырабатывают энергию в течение какого-то непродолжительного времени, но стать настоящими звездами не могут, и обнаружить их чрезвычайно сложно.

Процесс старения звезд выглядит следующим образом. После того как водород в недрах нормальной звезды перегорит, этот процесс начинает происходить в оболочке, в результате чего размер звезды многократно увеличивается. Так рождаются красные гиганты и сверхгиганты.

Часть красных гигантов и сверхгигантов в зависимости от массы переходит в стадию планетарной туманности. Звезда сбрасывает свои наружные слои, обнажая ядро. Потом это ядро сжимается и превращается в белого карлика с исключительной плотностью.

Ситуация в звездах, масса которых превышает 1,4 массы Солнца, проходит по немного другому сценарию. Когда весь водород в ядре исчерпан, начинается превращение водорода в гелий в верхних слоях. А в ядре гелий превращается в углерод. В промежуточных слоях идет последовательное ядерное превращение более легких элементов в более тяжелые. В последней стадии ядро звезды состоит уже из железа, никеля и кобальта, а в слоях вокруг него идет ядерное горение кремния, неона, кислорода и гелия. Затем, достигая порога в 1,4 массы Солнца, ядро коллапсирует в нейтронную звезду. Все это происходит за считанные миллисекунды. Протоны соединяются с электронами и образуют нейтроны. Это ядро меняет размер с диаметра Земли до каких-нибудь 100 км в поперечнике. В момент, когда нейтроны внутри ядра достигают максимального сжатия, процесс останавливается. Ударные волны обрушиваются на падающий верхний материал, отсюда возникает энергия огромного количества частиц, называемых нейтрино, которая порождает взрыв верхних слоев, обнажая нейтронное ядро. Эти верхние слои разлетаются во все стороны с огромными скоростями. А ядро образует нейтронную звезду, плотность которой превосходит плотность воды в триллион раз! Нейтронная звезда совершает несколько оборотов в секунду, а магнитное поле в миллионы раз сильнее земного.

Особый вид нейтронных звезд – пульсары. Они могут излучать радиоволны, световые, рентгеновские и гамма-лучи.

Если масса нейтронной звезды превышает 2–3 массы Солнца, то она сжимается в черную дыру, сила тяготения которой не выпускает наружу даже свет. И внутри нее уже ничего не может остановить коллапс (сжатие) материи в бесконечно малую точку. Достоверно известно о существовании черных дыр, называемых AO620-00 и V-404 Лебедя, массы которых превышают массу Солнца в 16 и 6,3 раз соответственно.

Можно считать также, что вещество, отлетающее с планетарной туманности, и остатки от взрыва сверхновых образуют материал для образования новых звезд.

Схематично последовательность выглядит так:

Газообразная туманность Протозвезда Звезда типа Солнца Красный гигант Планетарная туманность Белый карлик Или так (если масса звезды превышает солнечную более чем 1,4 раз):

Газообразная туманность Протозвезда Массивная звезда Красный сверхгигант Сверхновая звезда Нейтронная звезда Черная дыра Имеются и другие виды звезд: пульсирующие, неправильные, вспыхивающие звезды, двойные и тесные двойные звезды.

Во Вселенной существуют переменные звезды – звезды, блеск которых имеет свойство меняться. Количество света меняется оттого, что звезды пульсируют или выбрасывают облако вещества. Если система состоит из двух звезд, то одна может закрывать другую, отсюда изменение блеска.

Иногда звезда-сверхгигант может сбрасывать с себя слои углеродной сажи, что заслоняет обзор звезды и вызывает резкое падение ее блеска. На некоторых звездах, Проксиме Центавра например, причиной солнечных вспышек может служить магнитное излучение.

Примерно половина всех звезд нашей галактики являются двойными, так что одна звезда вращается вокруг другой за счет силы взаимного тяготения. Например, парные звезды – Мицар и Мицар В, расположенные в Большой Медведице.

Если двойные звезды расположены близко друг к другу, то силы тяготения стремятся растянуть каждую из них в форму груши. Эти две грушеобразные фигуры образуют трехмерную восьмерку, которая называется полостью Роша. Ее поверхность представляет собой критическую границу роста одной из звезд. Если размер звезды достиг этой границы, то вещество начинает перетекать с одной звезды на другую в точке, где полости соприкасаются. В такие системы могут входить нейтронные звезды в паре с Голубым гигантом или Белым карликом.

Все звезды проходят спектральную классификацию. На основании качественного описания спектра можно сделать вывод о температуре поверхности, светимости и особенностях химического состава. Последовательность этих классов имеет вид O – B – A

– F – G – K – M, где звезды класса О самые горячие, а остальные, по порядку, имеют более холодную температуру.

Созвездия Современная астрономия поделила небесную сферу на участки для упрощенного ориентирования на звездном небе. В древности созвездиями назывались группы звезд, которые образовывали различные фигуры.

До XIXвека созвездия определялись не точно: некоторые звезды являлись частью сразу двух созвездий, а некоторые участки звездного неба вообще не входили ни в одно созвездие.

В начале XIX века была попытка провести четкие линии между созвездиями, но общего мнения относительно расположения их на небосводе не было.

Решением римской Генеральной ассамблеи Международного астрономического союза в 1922 году были утверждены 88 созвездий, а пять лет спустя были проведены между ними четкие линии. Хотя эти линии могут не совпадать с нынешними из-за микронаклона земной оси.

47 из 88 созвездий были известны уже в древности, в частности, их названия происходят из мифологии Древней Греции. Названия остальных созвездий произошли уже в XVII–XVIII веках в процессе изучения южного неба.

12 созвездий, проходящих через Солнце, традиционно называют зодиакальными.

Официальный список созвездий:

Андромеда Близнецы Большая Медведица Большой Пес Весы Водолей Возничий Волк Волопас Волосы Вероники Ворон Геркулес Гидра Голубь Гончие псы Дева Дельфин Дракон Единорог Жертвенник Живописец Жираф Журавль Заяц Змееносец Змея Золотая Рыба Индеец Кассиопея Киль Кит Козерог Компас Корма Лебедь Лев Летучая Рыба Лира Лисичка Малая Медведица Малый Конь Малый Лев Малый Пес Микроскоп Муха Насос Наугольник Овен Октант Орел Орион Павлин Паруса Пегас Персей Печь Райская Птица Рак Резец Рыбы Рысь Северная Корона Секстант Сетка Скорпион Скульптор Столовая Гора Стрела Стрелец Телескоп Треугольник Тукан Феникс Хамелеон Центавр Цефей Циркуль Часы Чаша Щит Эридан Южная Гидра Южная Корона Южная Рыба Южный Крест Южный Треугольник Ящерица Скрытое вещество Гало При наблюдении с Земли нашей Вселенной и глубинном математическом и спектральном анализе видимой ее части астрономы пришли к выводу, что видимая Вселенная – это только часть той Вселенной, которую мы можем изучать при помощи всевозможных телескопов и прочих устройств для исследования ее с Земли. Ученые пришли к такому выводу, рассчитав скорость движения некоторых галактик (в первую очередь в скоплении Волос Вероники). Расчеты проводились по наблюдаемым скоростям движения галактик. Массы галактик, определяемые по скоростям, не соответствовали вычислению их по спектральному анализу. Получалось так, что скоростной анализ выводил результат, согласно которому массы галактик не соответствовали результатам вычислений по красному смещению. Из результатов этих анализов напрашивался вывод: большую часть объектов мы разглядеть вообще не в состоянии.

Другим подтверждающим фактом является то, что при такой массе скорости удаленных от центра звезд должны уменьшаться, а они не только не уменьшаются, но в отдельных случаях даже повышаются.

Во Вселенной нередко наблюдается такое явление

– гравитационная линза. Это искажение видимости более дальних объектов более ближними за счет сил гравитации. Эта гравитация может исходить от малых планет (таких как Юпитер), черных и нейтронных дыр, карликовых звезд. Еще в этом могут принимать участие элементарные частицы (типа протонов, нейтронов…), которые нам неизвестны и которые мы воспроизвести в земных условиях не можем. Это могут быть элементарные частицы с экзотическими физическими характеристиками.

Мы с уверенностью можем констатировать, что Вселенная на 1 % состоит из звезд, на 4 % из межзвездного газа и 95 % из неизвестно чего. Но видимая часть Вселенной продолжает изучаться, пускай и знания о ней, с учетом присутствия в ней скрытого вещества, являются неполными. При этом все, что мы уже узнали о Вселенной, является достоверным.

Обзор планет Солнечной системы. Меркурий Меркурий – ближайшая планета к Солнцу, и меркурианский год длится на ней 88 дней. Это предпоследняя планета, самая малая после Плутона. Атмосфера на ней отсутствует, твердый грунт весь покрыт кратерами. Меркурий практически не бывает виден из-за его близости к Солнцу.

Сутки на Меркурии длятся 59 дней (оборот вокруг своей оси). Вполне вероятно, что скорость его вращения была большей, но сила тяготения Солнца замедлила его вращение.

Атмосфера на планете отсутствует. Может, там и были когда-то какие-то газы, но под воздействием лучей Солнца они просто-напросто испарились. Единственным источником газов на планете являются газовые струи водорода и гелия, которые вырываются из Солнца. Также под действием высоких температур из твердых пород выделяются атомы натрия. Крайне просто составить прогноз погоды на планете. Днем – адская жара под 430 °C и невыносимый холод ночью

– около 180 °C.

В 1974–1975 годах космический корабль «Маринер-10» сделал более 10 тыс. фотоснимков поверхности этой планеты (это более половины всей поверхности планеты). Поверхность богата кратерами сродни лунным. А бассейн Калорис имеет в диаметре 1300 км.

Телескоп «Хаббл» никогда не фотографировал и не будет фотографировать эту планету во избежание поломок, которые могут быть вызваны солнечным излучением.

Кратко о Меркурии.

Масса: 0,055 массы Земли, т. е. 3,310 кг.

Диаметр: 0,38 диаметра Земли, т. е. 4870 км.

Температура поверхности: максимум +430 °C, минимум -180 °C.

Длина суток (один цикл вокруг своей оси): 58,65 земных суток.

Среднее расстояние от Солнца: 58 млн км.

Период вращения по орбите: 88 земных суток.

Mercury is first, Mercury is hot Outside of Mercury for us is a port For our horse and our port For horse, getting out our war… Обзор планет Солнечной системы. Венера Венера – самая близкая к Земле планета. Самое маленькое расстояние, когда она подходит к Земле, – 45 млн км. Разглядеть ее поверхность не представляется возможным из-за плотной облачной атмосферы.

Полученные с помощью радара снимки указывают на то, что на поверхности Венеры присутствует большое количество кратеров, вулканов и гор. Температура на поверхности может достигать 480 °C. А в атмосфере Венеры содержится в 105 раз больше газов, чем в атмосфере Земли. Не исключена вероятность присутствия когда-то в прошлом обширных океанов. Год на Венере длится 225 земных суток, а от Солнца ее отделяют 108 млн км. Сутки длятся 243 земных дня, что является рекордом среди всех планет Солнечной системы. Ее масса и размер очень похожи на земные, иногда ее называют близнецом или сестрой Земли.

Атмосфера Венеры состоит в основном из углекислого газа с примесями азота. Венерианские облака содержат капельки серной кислоты, которые время от времени выпадают на ее поверхность кислотными дождями.

У Венеры имеется квазиспутник – тело, обращающееся вокруг орбиты самой планеты, именуемое как астероид 2002 VE (68 нижняя степень).

Найти Венеру на ночном небе не представляется трудной задачей. Ее плотные облака прекрасно отражают солнечный свет.

Наблюдать Венеру возможно через час после захода Солнца или за час до восхода. Угол между Венерой и Солнцем никогда не переваливает за 47°. Две точки на орбите, которые соответствуют этому значению, называются наибольшей восточной и наибольшей западной элонгонациями. Венера имеет фазы, подобно Луне. Галилей в 1610 году, наблюдя их, сделал вывод, что Венера находится ближе к Солнцу, чем наша Земля. Его наблюдения за Венерой позволили сделать вывод, что Солнце является центром нашей Солнечной системы.

Космические корабли для исследования поверхности Венеры приходится строить так, чтобы они могли выдерживать разрушительную силу атмосферы этой планеты.

Первый аппарат, запущенный в 1970 году на Венеру, развалился спустя приблизительно час после пребывания в атмосфере, но необходимые снимки поверхности были успешно отправлены на Землю. А в 1982 году были получены цветные снимки поверхности планеты.

Чисто теоретически атмосферу Венеры можно терроформировать, т. е. создать на планете условия для жизни. Для этого необходимо распылить в атмосфере сине-зеленые водоросли, которые переработали бы углекислый газ в кислород, тем самым многократно уменьшая парниковый эффект и, следовательно, уровень температуры на планете. Но процесс фотосинтеза требует наличия воды, а воды на Венере практически нет даже в виде паров. Поэтому первым этапом на Венеру нужно доставить воду. Опять-таки теоретически это возможно доставкой на планету водно-аммиачных астероидов. На высоте ~50–100 км в атмосфере Венеры условия пригодны для существования некоторых земных мелких бактерий.

Кратко о Венере.

Масса 0,8154 от массы Земли, т. е. 4,87 10 кг.

Диаметр экватора 0,949 диаметра экватора Земли, т. е. 12 100 км.

Плотность: 5,25 г/см.

Период вращения относительно звезд: 243 дня.

Расстояние от Солнца (среднее):108 млн км Период обращения по орбите (год): 224,7 земных суток.

Venus is hot as Mercury too But this planet we are be able to proof To use to saving of people in blue Shortly, by the second home it would be to use.

Обзор планет Солнечной системы. Луна Луна, спутник Земли, находится на расстоянии 380 тыс. км от поверхности нашей планеты. На Луне отсутствуют воздух, вода, погода. Ее поверхность – горы, кратеры, моря затвердевшей лавы и слои пыли. Масса Луны в 81 раз меньше Земли, а радиус почти в четыре раза меньше земного. Гравитация Луны в шесть раз меньше земной. Луна не обращается вокруг своей оси и повернута к Земле одной и той же стороной. Только иногда видны отклонения, в результате которых можно увидеть три пятых поверхности Лунного спутника. Спутники прислали на Землю снимки обратной стороны Луны, на которых видно, что сторона, невидимая с Земли, вся покрыта горами.

Небо над Луной всегда черное, поскольку нет атмосферы над ее поверхностью, которая бы служила для рассеивания солнечного света. В вакууме над поверхностью Луны царит тишина, так как для звуков необходима атмосфера. На солнечной стороне температура на Луне достигает температуры кипения воды, а на обратной ее стороне температура может опускаться до отметки минус 240 °C.

В 1959 году советский космический искусственный спутник облетел вокруг Луны и сделал первые, не очень точные снимки ее обратной поверхности. Десять лет спустя американцы высадили на Луну человека, и до конца 1972 года на Луне побывало 6 экипажей «Аполлон». С Луны было доставлено 385 кг лунной породы. В ходе экспедиций аполлоновцам удалось также использовать лунный вездеход – машину для перемещения на лунной поверхности. Изучив породы с лунной поверхности, ученым удалось установить возраст Луны, который равняется 4,65 млрд лет. Обилие кратеров на Луне объясняется обширным метеоритным обстрелом, который продолжался сотни миллионов лет. С помощью сейсмометров, установленных в разных частях Луны, ученые пришли к выводу, что лунная кора имеет толщину 60–100 км. Под ней лежит слой плотной породы в 1000 км, а в глубине находится горячее ядро, которое не имеет магнитного поля вследствие отсутствия в нем железа.

Луна прекрасно подходит для создания лунных исследовательских баз, так как с нее хорошо видны различные небесные тела. В лунных породах содержится водород и кислород, эти ресурсы могли бы обеспечить станцию водой и воздухом. Она богата алюминием, железом и кремнием.

20 июля 1969 года Нейл Армстронг и Эдвин Олдрин впервые высаживаются на Луну, добывают лунную породу и возвращаются на Землю.

Возможно, в будущем будут организованы туристические полеты на Луну.

Кратко о Луне.

Масса: 0,0123 массы Земли, т. е. 7,3477 10 кг.

Диаметр: 0,273 диаметра Земли, 3476 км.

Плотность 3,342 г/см.

Сила тяготения на поверхности: 0,1653 от силы тяготения на поверхности Земли.

Обзор планет Солнечной системы. Марс Планета Марс похожа на Землю, но меньше размером и холоднее. На Марсе можно встретить глубокие каньоны, гигантские вулканы и обширные пустыни. Красная планета, так ее называют вследствие присутствия на поверхности окиси железа, имеет два спутника – Фобос и Деймос (открыты в 1877 году).

Марс является четвертой планетой от Солнца. Это единственная планета, на которую мог бы высадиться человек. Астронавтам с помощью современных ракет пришлось бы добираться до планеты 4 года. Сила тяготения на Марсе меньше земной. Атмосфера состоит из углекислого газа с чуть заметной примесью кислорода и воды.

Год на Марсе длится почти как два года на Земле, так как эта планета расположена дальше от Солнца.

В зимний период на Марсе в северном и южном полушариях образуются ледяные шапки, которые состоят из замерзшего углекислого газа. А летом характерно появление теплых ветров, которые поднимают сильнейшие бури на поверхности. Температура на экваторе летом может подниматься чуть выше нуля. Но все же по большей части марсианский климат напоминает Аляску или Антарктиду.

В 1960-х годах американский космический зонд «Маринер-4» впервые четко сфотографировал поверхность планеты. В 1975 году два аппарата «Викинг» сфотографировали Марс во всех деталях, в том числе и с поверхности, а также провели анализ грунта, согласно которым на Марсе не было обнаружено каких-либо признаков жизни. Горы на Марсе в два раз выше земных, а каньоны в два раза глубже.

Кратко о Марсе.

Масса: 0,107 массы земли, т. е. 6,4 10 кг.

Диаметр: 0,53 диаметра Земли, т. е. 6670 км.

Плотность: 3,95 см.

Период обращения относительно звезд (сутки):

24,6229 ч.

Расстояние от Солнца (в среднем): 228 млн км.

Период обращения по орбите (год): 687 дней.

Mars is the red planet, it’s colder than Earth Fobos and Deymos are around as harbours Films and books narrates about fantastic war Where marsians assault come up our world.

Обзор планет Солнечной системы. Юпитер Юпитер является самой большой по размеру планетой Солнечной системы, в 11 раз превосходящей Землю по диаметру. Обилие облаков и газовые пятна, характерные для планеты, делают ее весьма живописной для наблюдения.

Атмосфера Юпитера на 85 % состоит из водорода и на 14 % из гелия. Хоть Юпитер считается газовой планетой, но на большой глубине от ее поверхности содержится водород под огромным давлением, который придает ему некоторые характеристики металла.

Красноватые полосы на Юпитере имеют название «пояса», а светлые полосы – «зоны» Так называются облака верхних слоев атмосферы.

В них, помимо водорода и гелия, также содержатся метан, ядовитый аммиак, водяные пары и ацетилен.

В наружных слоях атмосферы проглядываются грозовые молнии. В высших слоях атмосферы температура достигает минус 160 °C и постепенно увеличивается вглубь. Уже в 60 км ниже верхнего края атмосферы она достигает 0°, а еще глубже пересекает отметку в 100 °C.

На глубине 100 км водород из газа превращается в жидкость, а на глубине 17 тыс. км водород обретает свойства металла и начинает проводить электрический ток, отсюда и магнитное поле, которое исходит от Юпитера. Металлический водород нельзя воспроизвести в лабораторных условиях.

Интересен тот факт, что Юпитер получает от Солнца меньше тепловой энергии, чем производит сам.

Планета имеет три источника тепла: остались еще запасы тепла со времен образования Юпитера; энергия высвобождается за счет медленного сжатия планеты и энергии радиоактивного распада.

Магнитное поле Юпитера простирается на 50 диаметров планеты во все стороны. Радиоизлучение, производимое Юпитером, является рекордным в нашей Солнечной системе.

Скорость обращения вокруг оси исключительно велика – оборот длится 10 часов. Из-за этой скорости внешний вид облаков планеты может изменяться за несколько дней.

Интересной «достопримечательностью» Юпитера является Большое Красное пятно, размеры которого превосходят размеры Земли. Это пятно заметили еще 300 лет назад.

Юпитер имеет не менее 63 спутников. Один из них, Ганимед, имеет размер, превосходящий размеры Меркурия. Также вокруг планеты вращаются Каллисто, Европа, Ио. Остальные спутники, летающие ниже орбиты Ио, считаются обломками спутников, которые уже перестали существовать, а другие спутники являются просто астероидами, попавшими в зону притяжения Юпитера.

Помимо спутников, Юпитер еще имеет три слабовыраженных кольца, состоящие из мелкой пыли.

Фотографировали Юпитер советские корабли «Пионер-10» и «Пионер-11», вслед за ними изучение продолжили два космических корабля «Вояджер». Последний «Галилей» был запущен в октябре 1989 года. Также фотографировал Юпитер космический телескоп «Хаббл», снимки которого не уступают по качеству тем, что были сделаны «Вояджерами».

Кратко о Юпитере.

Масса: в 318 раз больше массы Земли, т. е. 1,9 10 кг.

Диаметр экватора: в 11,2 раза больше земного, т. е.

143 760 км.

Плотность: 1,31 г/см.

Температура верхних облаков:

-160 °C.

Период обращения вокруг своей оси: 9,93 ч.

Среднее расстояние от Солнца: 778 млн км.

Период обращения по орбите (год):11,86 лет.

Jupiter is largest, is weaved from gas, The wreath surrounds this pic of a palace C’mon Earth-RosCosmos, C’mon Earth-NASA, Together we’ll open the riches of this yard!

Обзор планет Солнечной системы. Сатурн Сатурн занимает шестую позицию относительно близости к Солнцу среди планет Солнечной системы.

Этот холодный мир отделен от нашей звезды почти на 800 тыс. км, и поведение слоев его атмосферы весьма похоже на поведение слоев атмосферы Юпитера.

Сатурн тоже состоит из водорода и гелия. Имеются в атмосфере и зоны облаков аммиака.

Скорость ветров на планете может достигать 1800 км/ч. Это в несколько раз больше, чем на Юпитере и тем более на Земле.

Поверхность планеты имеет весьма однотипный ландшафт. Имеются белые пятна, но и они крайне редки.

Планета Сатурн имеет систему колец. Их частицы состоят из водяного льда и камней, покрытых льдом.

Фактически они являются микролунами, каждая из которых вращается по своей собственной орбите. Размер этих частиц варьируется от нескольких сантиметров до десятков метров. Встречаются и каменные глыбы размером до сотен метров в поперечнике. Плоскость колец относительно плоскости орбиты Сатурна равна 29°. Снимки «Вояджера» показали, что количество таких колец у Сатурна великое множество, хотя на первый взгляд можно разглядеть только три. Щели между кольцами образуют силы тяготения многочисленные луны Сатурна, известное количество которых на сегодняшний день достигает 62.

Считается, что кольца образовались в результате слишком близкого прохождения древних лун к планете, гравитационные силы которой раздробили их на мелкие части. Не исключена и версия того, что эти кольца остались еще со времен образования планеты.

Открытый в 1655 году Христианом Гюйгенсом спутник Сатурна Титан имеет размер 5150 км в диаметре. Он является одним из немногих спутником в Солнечной системе, который имеет атмосферу. Атмосфера состоит главным образом из азота с примесью метана. Температура на поверхности спутника всего – 180 °C, а атмосферное давление похоже на земное.

Кратко о Сатурне.

Масса: 5,65 10 кг.

Диаметр экватора: 120 420 км.

Температура верхних слоев облаков:

-150 °C.

Среднее расстояние от Солнца: 778 млн км.

Период обращения вокруг своей оси: 10,54 ч.

Период обращения по орбите (год): 29,46 лет.

The sixth planet – Saturn, with wreaths, is large!

Note of Speeds of the winds are so much!

The amount of rings reachs 62th!

Perhaps, I’ll jump for the sky (with hope and with you (you, you …))… Обзор планет Солнечной системы. Уран Уран был открыт 13 марта 1781 года англичанином Уильямом Гершелем, астрономом-любителем.

Его атмосфера преимущественно состоит из водорода и гелия, также в ней присутствует метан (около 15 %). Именно благодаря метану Уран имеет синеватую окраску. Облачности на планете практически нет, что подтвердил космический зонд «Вояджер-2». Массивное ядро Урана состоит из камня и железа. Интересен тот факт, что собственная ось вращения Урана наклонена больше, чем на 90°. Вследствие этого его северный полюс в течение 20 лет может быть обращен к Солнцу, а Южный в это время постоянно находится во тьме.

Планета окружена кольцами, состоящими из камней разного размера, и тонкой пыли. Открыть их удалось благодаря тому, что Уран проходил сквозь свечение одной неяркой звезды, и астрономы заметили, что она успела мигнуть несколько раз перед тем, как Уран ее закрыл.

Планета имеет 27 открытых спутников, расположенных на разных орбитах. Большинство из них было открыто только в конце XX века.

Кратко об Уране.

Масса: 8,7 10 кг.

Диаметр экватора: 51 300 км.

Плотность: 1,27 г/см.

Температура:

-220 °C Период обращения вокруг оси: 17 ч 14 мин.

Период обращения по орбите: 84 года.

In 18th cent, Uran was opened The sun system don’t come to the end, Yet two big planets it includes, This book will explain which had come to you!

Обзор планет Солнечной системы. Нептун Планета Нептун была открыта отчасти математически. Ученые ломали голову над тем, почему планета Уран постоянно отклоняется от своего пути. Это могло происходить только за счет гравитационного воздействия еще одного небесного тела или планеты. Поэтому поиски продолжались. В 1845 году математики Джон Кауч Адамс и Джеймс Чаллис путем вычислений зафиксировали новую планету, но это была только математика… В это же время француз Урбэн Леверье пытался подвигнуть своих коллег в Парижской обсерватории во Франции на поиски новой планеты и заодно отправил письмо в Германию. А получивший письмо немецкий астроном Иоганн Галле ночью 23 сентября 1846 года обнаружил предсказанную планету в том самом месте, где она была вычислена математически. Было принято решение назвать планету в честь древнеримского бога Нептуна.

Нептун теплее Урана, несмотря на то что его орбита проходит дальше от Солнца. Это объясняется тем, что его внутренний источник энергии вырабатывает в три раза больше тепла, чем получает от Солнца.

На поверхности Нептуна весьма развиты погодные явления. Имеются метановые замерзшие облака и Большое Темное пятно, похожее на Большое Красное пятно Юпитера.

Нептун также имеет кольца, состоящие из камней и пыли, подобные кольцам Урана и Сатурна.

В настоящий момент известно 13 спутников Нептуна. Самый большой из них – Тритон, имеет азотную атмосферу и состоит на 30 % из воды и на 70 % из твердых пород. Ландшафт Тритона очень разнообразен: громадные скалы сменяются бесчисленным количеством кратеров. Он медленно движется по спирали к Нептуну под действием приливных сил и в конечном счете будет разрушен при достижении определенного предела. Его обломки образуют кольцо, которое, по всей вероятности, превзойдет по мощности кольца Сатурна. Но это произойдет в период ближайших 10–100 млн лет.

Кратко о Нептуне.

Масса: 1 10 кг.

Диаметр экватора: 49 500 км.

Плотность: 1,77 г /см.

Температура:

-213 °C.

Период обращения вокруг оси: 17 ч 52 мин.

Среднее расстояние от Солнца: 4,5 млрд км.

Период обращения по орбите: 165 лет.

Neptun is reactor, and this is not all It has 13th satellites, any telescope this will show It has also one the big wreath, Have Continued, I will by it breathe… Обзор планет Солнечной системы. Плутон Анализируя движение Нептуна по орбите, ученые стали догадываться о существовании еще одной планеты, которая находится за Нептуном. Плутон был открыт американским астрономом Клайдом Томбо в начале 1930 года. Но в силу удаленности этой планеты от Земли разглядеть какие-либо подробности его поверхности не представляется возможным.

По размеру Плутон меньше семи естественных спутников других планет: Ганнимеда, Титана, Каллисто, Ио, Луны, Европы и Тритона. Атмосфера этой планеты (классифицирующейся с недавнего времени как карликовая планета) состоит на 99 % из азота, чуть меньше 1 % приходится на моноокись углерода и 0,1 % метана.

В 1978 году в обсерватории ВМС США была открыта луна Плутона – Харон. Расстояние между ними насчитывает менее 20 тыс. км. По составу они очень напоминают друг друга, хотя и различаются по массе и диаметру.

Температура на поверхности Плутона чрезвычайно холодная —230 °C. В теплое время года, когда Плутон наиболее приближен к Солнцу, она поднимается до

-200 °C.

Хотя температура атмосферы имеет большее значение —180 °C.

Кроме спутника Харона, который в два раза меньше планеты по диаметру, Плутон имеет еще два спутника – Гидру и Никту, гораздо меньших размеров. Гидра расположена примерно в 65 тыс. км, а Никта – в 50 тыс. км от Плутона.

Солнце с Плутона просматривается как яркий диск, но не крупного размера. Атмосфера, которая все же присутствует, примерзает к поверхности зимой.

Кратко о Плутоне.

Масса: 1,3 10 кг.

Диаметр: 2324 км.

Плотность: 2 г/см.

Температура:

-230 °C.

Среднее расстояние от Солнца: 5900 млн км (макс.

7375, мин. 4425).

Platon and Haron are the farest planets About them we know less then all But ever we will fly and step on their surface And will play with joy there in football!

Обзор тел солнечной системы. Астероиды и карликовые планеты Астероид – это небольшое планетоподобное тело, двигающееся по орбите вокруг Солнца. Классифицируют астероиды как объекты, имеющие в диаметре больше 10 м. Большинство астероидов расположены на орбите между Марсом и Юпитером. Имеются несколько сотен астероидов, расположенных вблизи орбит Земли, Венеры и Меркурия. Примерно между орбитой Юпитера и главным поясом астероидов лежит треугольник астероидов группы Хильда. Группа астероидов «троянцы» идет позади Юпитера, а группа «греки» опережает его.

Группа астероидов между орбитами Юпитера и Нептуна носит название «кентавры». Эта группа является переходной между главным поясом астероидов и поясом Койпера. К ним относятся Хирон, Фол, Несс, Асбол, Харикло и некоторые другие. При наибольшем приближении к Солнцу у Хирона была замечена кома – облако из пыли и газа, окружающее ядро кометы, поэтому Хирон одновременно имеет статус и кометы и астероида. Самый большой астероид, Церера (главный пояс астероидов), представляет собой 32 % от всей массы астероидов в Солнечной системе.

Хотя с недавнего времени этот астероид получил статус карликовой планеты. Еще три астероида – 4 Веста, 2 Паллада и 10 Гигея имеют массы соответственно 9 %, 7 % и 3 % от общей массы данных небесных тел. Для справки можно уточнить, что масса Цереры равна 0,95 10 кг, а ее диаметр 975 909 км. Так что остальные астероиды имеют ничтожную по астрономическим меркам массу. Около трех четвертей известных астероидов состоят из карбонатов, 17 % состоят из силикатов и остальные металлические. Есть и другие астероиды, имеющие несколько другую химическую структуру, но их немного.

Первый астероид 1 Церера был обнаружен итальянцем Пиацци в самом начале 1801 года. После этого в течение шести лет были открыты еще три астероида. В 1815 году большинство астрономов решило, что больше подобных тел не существует, и приостановило поиски. Однако Карл Людвиг Хенке в 1830 возобновил поиски и спустя пять лет открыл Астрею, а чуть позже и Гебу. После этого астрономы вновь включились в поиски и, за исключением 1945 года, астероиды обнаруживались каждый год.

Опасности для человечества астероиды не представляют. Даже если при каких-то условиях самый опасный астероид Апофис диаметром в 300 м врежется в Землю точным попаданием, то максимум того, что он уничтожит, будет один город. Но чем больше астероид, тем легче его заметить, поэтому ни один астероид в Солнечной системе реальную опасность человечеству для жизни на Земле не несет.

Интересными астероидами являются так называемые неправильные спутники Земли. Они были обнаружены несколько лет назад. Их траектория обусловлена движением вокруг орбиты Земли и имеет в связи с этим спиралевидную форму. На данный момент их обнаружено четыре. Один из них, называемый Круинье, путешествует относительно оси орбиты Земли, подходя то ближе к орбите Меркурия, то ближе к орбите Марса.

Некоторые астероиды являются спутниками астероидов и движутся по орбите вокруг них. Например, астероид Ида, тот, что вблизи Юпитера, имеет спутник, называемый Дактилем.

Крупные астероиды с недавнего времени получили статус карликовых планет. Они находятся на так называемой транснептуновой орбите (ТНС) или в поясе Койпера, а за ним и в рассеянном диске. Т. е. их орбиты расположены за орбитой планеты Нептун. Плутон тоже получил статус карликовой планеты. Количество карликовых планет – больше десятка. Среди них можно отметить Эриду – ее диаметр практически совпадает с размерами Плутона, и которая совершает оборот вокруг Солнца за 559 лет. К карликовым планетам можно отнести также объекты Макемаке, Хаумеа, 2007 OR10 (нижняя степень), Квавар, Орк, 2002 AW197 (нижняя степень), Варуна, Эксион, 2002 UX 25 (нижняя степень); хотя часть из них находятся в очереди на получении статуса карликовой планеты.

Обзор тел Солнечной системы. Кометы Кометами являются небесные тела, имеющие небольшой размер и «туманный вид». Они вращаются вокруг Солнца по вытянутым орбитам. По мере приближения к Солнцу кометы образуют кому и хвост из газа и пыли, направленный в противоположную сторону от Солнца. По всей вероятности, источником комет служит облако Оорта. Внутренней границей этой области считается расстояние от Солнца примерно в пол светового года, а внешней – в целый световой год. Объекты, расположенные в нем, преимущественно имеют структуру, состоящую из водных, аммиачных и метановых льдов. Но на данный момент точно известны только четыре объекта, один из них Седна, по классификации подходящий под статус карликовой планеты. Из облака Оорта прилетают долгопериодические кометы. А короткопериодические приходят из рассеянного диска.

На данный момент известно о существовании более 400 короткопериодических комет. Многие из них образуют так называемые семейства. Существуют семейства Юпитера, Сатурна, Урана и Нептуна.

Комета состоит из ядра диаметром несколько километров, имеющего вокруг себя кому диаметром до 80 тыс. км в поперечнике и состоит из твердых частиц и льда. Туманная оболочка, окружающая ядро, называется комой.

В 1994 году произошло столкновение кометы Леви-Шумейкера 1–9 с Юпитером, в ходе которого сначала комету разорвало на 17 частей, а позже, под действием гравитации, они рухнули в газовую оболочку Юпитера.

Самая популярная комета – это комета Галлея, появляющаяся каждые 75–76 лет и известная астрономам около 2500–1000 лет.

Метеориты и метеоры 9 октября 1933 года жители многих стран, включая страны Африки, Португалии и, конечно, в России могли видеть звездопад. Это был один из самых крупных метеоритных дождей в XX веке. Сами по себе звезды, конечно, не падают. Так врываются мелкие космические тела в атмосферу Земли и, перегорая, начинают светиться. Подсчеты показали, что число падавших тел достигало 10–15 тыс. в час. Такие метеорные рои образуются вследствие распада периодических комет. Метеорный рой, наблюдавшийся в 1933 году, образовался на орбите прохождения кометы Джакобини-Циннера (открыта в 1900 году). В 1946 году Земля вторично пересекла плотную часть этого метеорного роя, на нашем небе опять наблюдался звездопад.

Известны более 30 метеорных потоков. Их наблюдения необходимы для уточнения положений орбит метеорных роев в межпланетном пространстве, что очень важно для целей практической космонавтики.

Некоторые участки Солнечной системы настолько насыщенны метеорными телами, что полеты в их пределы пилотируемых космических кораблей опасны.

Выделяют среди метеоритов и так называемые болиды. Полеты таких тел в нашей атмосфере сопровождаются искрами и тянущимся огненным хвостом.

Такой болид был замечен 11 февраля 1976 года. Он наблюдался из Ленинградской, Псковской и Тверской областей. Болид летел с северо-запада на юго-восток. Полет был продолжительным, и только над территорией Советского Союза длина его пути составила 500 км. Где-то над истоками Днепра остатки теперь уже замедленного болида развалились на мелкие куски, вспыхнули и погасли. Стоить отметить, что если бы траектория движения этого болида была более крутой, он мог бы упасть где-то в районе Старой Руссы или Валдайской возвышенности. Последствиями такого падения могли стать многочисленные разрушения и, возможно, жертвы.

Немного о названиях планет и других тел солнечной системы. Мифология Меркурий А знаете ли вы, что Меркурий – это бог-покровитель в древнеримской мифологии. Его атрибуты – это жезл кадуцей, крылатый шлем, сандалии и, конечно, денежный мешочек. Культ Меркурия стал популярным тогда, когда Рим начал вести торговые отношения с соседними народами (эпоха Тарквиниев, первый торговый трактат между Карфагеном и Римом).

Сближение с греками (появление греческих колоний на юге Италии и развитие греческой промышленности) принесло римлянам новые религиозные представления, которые римляне подхватили для символического обозначения своих религиозных понятий. В 495 году до н. э. Меркурий официально вошел в пантеон римских богов. Вместе с культом Меркурия были введены культы Сатурна, подателя хлеба, и Цереры.

В 495 г. до н. э. (в майские иды) храм в честь Меркурия был освящен. Кроме этого, тогда был упорядочен хлебный вопрос (annona), также появилось сословие купцов, носивших название mercatores или mercriales.

В древнегреческом пантеоне Меркурию соответствует Гермес.

Венера А знаете ли вы, что Венера первоначально в римской мифологии считалась богиней цветущих садов, весны, плодородия, произрастания и расцвета всех плодоносящих сил природы. Чуть позже Венера стала отождествляться с греческой Афродитой. В связи с этим, поскольку Афродита была матерью Энея (родоначальником основателей Рима), Венера считалась не только богиней любви и красоты, но также родоначальницей потомков Энея и покровительницей римского народа. Ее символами считались голубь и заяц (символ плодовитости), из растений ей были посвящены мак, роза и мирт.

Культ Венеры существовал в Ардее и Лавинии (регион Лацио). Самый первый известный храм Венеры был построен 18 августа 293 г. до н. э. Этот день стал днем фестиваля Vinalia Rustica. После поражения в битве у Тразименского озера во второй Пунической войне 23 апреля 215 г. до н. э. на Капитолии также был воздвигнут храм Венеры.

Афродита и Венера чаще рассматриваются как синонимы. В Россию имя Афродита пришло через Византию.

Венера в искусстве

Венера в живописи:

Рождение Венеры. Боттичелли. 1485–86. Флоренция, Уффици Венера Урбинская. Тициан. О.1536. Флоренция, Уффици Спящая Венера. Джорджоне. 1508–10. Дрезден Марс и Венера. Веронезе. 1580-е гг. Турин, галерея Сабауда Венера с зеркалом. Веласкес. 1657. Лондон, Национальная галерея Рождение Венеры. Адольф Бугро. 1879. Париж, Музей Орсе.

Марс А знаете ли вы, что Марс – это один из древнейших богов Италии и Рима, который входил в триаду богов, первоначально возглавлявших римский пантеон (Юпитер, Марс и Квирин). Древняя Италия почитала его как бога плодородия. Считалось, что гибель урожая или падеж скота – это гнев Марса. Месяц март происходит от имени Марс, этот месяц был первым в римском году, в нем совершался обряд изгнания зимы. Позднее Марс отождествили с греческим Аресом, и он стал богом войны. Храм Марса уже как бога войны был воздвигнут на Марсовом поле вне городских стен. Так как Марс отец Ромула и Рема, то Марс считался родоначальником и хранителем Рима. Копье, хранившееся в жилище римского царя – регии, было символом Марса. Отправляясь на войну, римляне взывали к Марсу.

Малозначительная богиня Нерио (ее отождествляли с Венерой и Миневрой) была женой Марса. С ней связана забавная история. Марс влюбился в Минерву и обратился с просьбой о сватовстве к Анне Перенне, престарелой богине. Анна выполнила его просьбу, но… когда он поднял покров невесты, то увидел саму Анну Перенну. Остальной пантеон долго потешался над этой шуткой.

Священными животными Марса считались волк и дятел.

Юпитер А знаете ли вы, что Юпитер – бог неба в древнеримской мифологии, а также бог дневного света, отец богов, верховное божество у римлян. Богиня Юнона приходится ему супругой. Юпитер соответствует греческому богу Зевсу. Юпитеру посвящены дни полнолуния – иды. Почитался на возвышенностях и вершинах гор в виде камня. Храм Юпитера находился на Капитолии, где Юпитер вместе с Юноной и Минервой составлял тройку главнейших римских богов.

Многообразный Юпитер В Италии существовал целый ряд богов под именем Юпитер. Юпитер Тонанс означал «дождь, гром».

Юпитер Фульгур посылал молнии. Оптим Максим Сотер означает «лучший, величайший, спаситель», так именовался Юпитер в римском культе. Юпитер Виктор давал победу. Юпитер Лациарис был богом союза латинских племен. Юпитер Дапалис покровительствовал земледелию. Юпитер Термин был хранителем границ. Юпитер Либертас защищал свободу.

Юпитер Феретрий давал победу в войне. Юпитер был самым популярным из всех богов, а также был покровителем императоров.

Сатурн А знаете ли вы, что Сатурн – это древнеримский бог (соответствует греческому Кроносу). Это бог земли и посевов. Был популярен в Лацие. С именем Сатурна связано время, когда не было войн, социального неравенства и собственности, а народ жил в изобилии и вечном мире. Праздник в честь этого бога назывался сатурнии. Сама Италия называлась в древности Сатурновой землей. Святилище Сатурна было основано Янусом на подножьях Капитолия.

Уран А знаете ли вы, что Уран – бог неба в древнегреческой мифологии, сын Эфира и Гемеры, или сын Офиона и старшей Фетиды. Отец богов. «Первый стал править миром». Гея, вступив с ним в брак, породила горы, нимф, моря, титанов и титанид, циклопов и сторуких исполинов – гекатонхейров. Своих продолжателей потомства Уран ненавидел за ужасную внешность. Он даже прятал их в утробу Геи, причиняя ей невыносимые страдания. Его сын Кронос оскопил отца серпом, защищая мать, и из этих капель крови родились эриннии, а из тех капель, что упали в море, родилась Афродита. Уран был отстранен от продолжения рода, а власть перешла к его сыну Кроносу. По преданию Уран погиб в океане, а погребен в крепости Авлакии.

Нептун А знаете ли вы что, Нептун – это бог морей и потоков в древнеримской мифологии. Один из старейших римских богов. Позднее он отождествлен с греческим богом Посейдоном. Богиня Салация (Фетида, Амфитрита) считалась его женой. Праздник нептуналий, который праздновался 23 июля, неизменно связан с Нептуном. Этот праздник отмечался с целью предотвращения засухи. Во время этого праздника строились хижины из листьев. Это божество почиталось людьми, связанными с морем или отправлявшимися в морское путешествие. В нашем городе Великий Устюг Нептун изображен на гербе города.

Плутон А знаете ли вы, что римский бог Плутон – это божество подземного царства мертвых. Старший сын Кроноса и Реи, брат Зевса, Посейдона, Геры, Гестии и Деметры. Супруг Персефоны (согласно мифу, он похитил ее). Плутон скорее известен как бог Аид. Культура сохранила множество мифов об Аиде.

Способы изучения космоса. Телескопы.

История возникновения В середине XV века Томас Диггес, астроном, пытался создать устройство наподобие телескопа с помощью выпуклой линзы и вогнутого зеркала. Однако оно не было доработано.

Ганс Липпершлей (1570–1619), голландец, поместил пару линз в трубке и, подав заявку на патент в 1608 году, назвал это подзорной трубой. Но его заявку отклонили, не увидев в ней никакого изобретения, к тому же, посчитали, что оно слишком простое. Тем не менее благодаря голландцу изобретение стало популярным во Франции и Италии.

В следующем году Томас Харриот модифицировал изобретение, благодаря которому астрономам удалось разглядеть лунный ландшафт, в котором можно было заметить кратеры и горы.

В этом же году Галилео Галилей, узнавший об изобретении, решил изготовить такой прибор для себя. Он и считается изобретателем первого в мире настоящего телескопа. Сегодня его изобретение называют рефрактором – зрительная труба и комбинация очковых линз. Используя ее, Галилей сам открыл горы и кратеры на Луне, доказал, что Луна является сферой, открыл четыре спутника Юпитера и кольца Сатурна. Телескоп Галилео имел 20-кратное увеличение, маленькое поле зрение и слегка размытое изображение.

В 1656 году Христиану Гюйенсу удалось сделать телескоп, имеющий увеличение изображения в 100 раз, его размер превышал 7 м, апертура 150 мм. К 1670м годам появился уже 45-метровый телескоп, дававший еще большее увеличение и угол обзора. Телескоп стал расти в длину, так как астрономы пытались убрать так называемые хроматические помехи (искажения).

В 1668 году Исаак Ньютон нашел решение: добавил в конструкцию телескопа вогнутые зеркала, отчего рефрактор получил название рефлектор. Хотя впервые эта идея была выдвинута Джеймсом Грегори в 1663 году.

В 1720 году англичане изобрели 15-ти см рефлектор, который позволил сократить длину телескопа до 2 м.

Француз Кассегрен предложил конструкцию рефрактора с использованием двух линз – кроны и флинта, изобретенными англичанами. Но его наработки не были воплощены в жизнь вследствие отсутствия у Кассегрена технической возможности. Тем не менее эти чертежи стали основой для конструкции современных телескопов, в частности телескопа «Хаббл».

Джон Долланд в середине XVIII века тоже изготовил объектив с двумя линзами, отчего он получил именование «объектив доллонда». После этого изобретения вогнутые зеркала стали исчезать из конструкции телескопа.

Вернуть в эксплуатацию вогнутые зеркала удалось астроному-любителю Вилльяму Гершелю.

Он использовал в своих телескопах конструкции с вогнутыми зеркалами, сплавленные из меди и олова, и с помощью этих телескопов он сделал крупнейшее открытие – планету Уран. Вслед за этим, увеличив диаметр рефрактора, ему удалось открыть 6-й и 7-й спутники Сатурна. Наряду вместе с ним, английский астроном-любитель лорд Росс, открыл ряд спиралевидных туманностей. Но рефракторы были несовершенны тем, что быстро тускнели и имели недостаточную отражающую способность.

Физик из Франции Леон Фуко в 1856 году вставил в рефрактор посеребренное стекло, следствием чего стало его же изобретение конца XIX века фотографирующего телескопа.

К развитию технологии конструкции телескопа приложили руку и ряд русских ученых, таких как М. В. Ломоносов и Я. В. Брюс. Брюс разработал специальные металлические зеркала для телескопов, а Ломоносову, независимо от Гершеля, занимавшемуся тем же самым, удалось модифицировать систему зеркал с целью уменьшения потери света.

К концу XIX века усовершенствовался способ изготовления стеклянных линз, вследствие чего отражательная способность выросла до 95 %. Были проведены успешные эксперименты и смонтированы параболические зеркала изогнутой формы.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим


Похожие работы:

«1 Публичный доклад ОБПОУ "Дмитриевский сельскохозяйственный техникум" 2014 – 2015 учебный год Областное бюджетное профессиональное образовательное учреждение "Дмитриевский сельскохозяйственный техникум". Государственный статус и тип обр...»

«IRISPen Air 7 Краткое руководство пользователя (iOS) Этот краткий справочник поможет приступить к работе со сканером IRISPen Air 7. TM Ознакомьтесь с этим руководством перед использованием сканера и его программного обеспечения. Вся информация может меняться без уведомления. Содержание 1. Введение 2. Установка приложения IRISPen...»

«Общие сведения Муниципальное бюджетное общеобразовательное учреждение "Ижемская средняя общеобразовательная школа" Тип школы: общеобразовательное учреждение Юридический адрес: 169460 РК, Ижемск...»

«ПРАВИТЕЛЬСТВО КЫРГЫЗСКОЙ РЕСПУБЛИКИ ПОСТАНОВЛЕНИЕ от 6 ноября 2015 года № 760 Об утверждении Порядка уплаты, исчисления платежа и ставок платежей за удержание лицензий на право пользования недрами В целях совершенствования правового регулирования недропользования, в соответст...»

«2000 ВЕСТНИК НОВГОРОДСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА №16 ББК 67.408 М.Н.Становский ПРОБЛЕМЫ МНОЖЕСТВЕННОСТИ ПРЕСТУПЛЕНИЙ The paper deals with the problem of plurality of crimes in the Russian criminal...»

«Православие и современность. Электронная библиотека Епископ ВЕНИАМИН (Милов) Дневник инока По благословению Святейшего Патриарха Московского и всея Руси Алексия II © Свято-Троицкая Сергиева Лавра, 1999 Содержание Предисловие Дневник инока 2 января 1928 года...»

«Вопросы лицензирования предпринимательской деятельности в России. Ламакина И. С. Студент ВлГУ, Юридический институт; 4 курс Владимир Аннотация: в данной статье поднимаются на...»

«Торопкин М. В. Андреев Д. А. ЛАМПОВЫЙ УСИЛИТЕЛЬ СВОИМИ РУКАМИ Элементная база ХХI века Наука и Техника, СанктПетербург Торопкин М. В., Андреев Д. А. Ламповый усилитель с...»

«МГУ имени М.В.Ломоносова ЮРИДИЧЕСКИЙ ФАКУЛЬТЕТ ПРИМЕРНАЯ ПРОГРАММА дисциплины МЕЖДУНАРОДНОЕ ИНВЕСТИЦИОННОЕ ПРАВО Рекомендуется для направления подготовки 40.04.01 "Юриспруденция" Квалификации (степени) выпускника – магистр...»

«Гурина Л. В. Ученые записки Крымского федерального университета имени В. И. Вернадского Юридические науки. – 2015. – Т. 1 (67). № 2. – С. 15–27. УДК 340.15:347.79 ВВЕДЕНИЕ КВАЛИФИКАЦИОННЫХ ТРЕБОВАНИЙ К СЛУЖАЩИМ СОВЕТСКОГО ТОРГОВОГО ФЛОТА В КОНЦЕ 1920-х – НАЧАЛЕ 1930-х ГГ. Гурина Л. В. Крымский ф...»










 
2017 www.book.lib-i.ru - «Бесплатная электронная библиотека - электронные ресурсы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.