WWW.BOOK.LIB-I.RU
БЕСПЛАТНАЯ  ИНТЕРНЕТ  БИБЛИОТЕКА - Электронные ресурсы
 

Pages:     | 1 ||

«Владимир Викторович Виноградов Стресс и патология Текст предоставлен правообладателем ...»

-- [ Страница 2 ] --

Рис. I-20. То же, что и на рис. I-16. Фаза истощения (72 ч опыта). Перегородки (клапаны) в просвете капилляра. 71 000 Деление и регенерация митохондрий во второй стадии стресса возникают тогда, когда нагрузка, падающая на миокард, не устранена и нарастающее действие повреждающего фактора приводит к усилению морфологических изменений в миокарде. Вначале на первый план выступают явления, связанные прежде всего с восстановлением количества митохондрий в кардиомиоцитах (24 ч опыта), а затем основными становятся процессы регенерации митохондрий, утративших кристный материал (48 ч опыта). Однако при непрерывном раздражении животных это восстановление никогда не бывает полным. Даже при увеличении общего количества митохондрий и содержания в них крист в каждой отдельной митохондрии количество крист не достигает исходного уровня, что является причиной постоянной гиперфункции органелл и их ускоренного разрушения [122].

Нарастающий энергетический дефицит вызывает необходимость включения в каждый цикл функционирования кардиомиоцита все большего количества митохондрий и тем самым прогрессивно сокращается возможность их полноценной регенерации. Таким образом, несмотря на усиление процессов регенерации митохондрий, во второй стадии одновременно увеличивается и процесс изнашиваемости органелл.

Эффективность генерации энергии в митохондриях отдельных кардиомиоцитов постепенно снижается, и для поддержания насосной функции сердца в каждом цикле его сокращения включается все большее количество миокардиальных клеток, в которых при этом начинают накапливаться деструктивные изменения. Дефектное энергообеспечение увеличивает дисбаланс между деструктивными и биосинтетическими процессами, что, в свою очередь, приводит к постепенному исчезновению компенсаторно-приспособительных реакций и нарастанию изменений, обусловливающих в последующем развитие сердечной недостаточности.



Деструкция митохондрий и миофибрилл кардиомиоцитов в третьей заключительной стадии стресса

– это срыв приспособительных механизмов, а прогрессивно нарастающее нарушение биоэнергетических процессов в сердце, приводящее к появлению деструктивных светлых клеток, можно рассматривать как коллапс энергетики миокарда. Энергетическое истощение лежит в основе развития и так называемого комплекса изнашивания гипертрофированного сердца [96], поскольку хроническая недообеспеченность миокардиальных элементов приводит их к гибели. На этой основе закономерно возникает сердечная недостаточность, а явления укорочения эффективного рефрактерного периода миокарда создают предпосылки для возникновения различных нарушений ритма сердца – от экстрасистолии до смертельной фибрилляции желудочков [96].

Таким образом, судя по морфологическим сдвигам ультраструктуры кардиомиоцитов, непосредственной причиной гибели животных в терминальной фазе истощающего иммобилизационного стресса, по всей вероятности, является сердечная недостаточность, развивающаяся на фоне фатальной несостоятельности энергообеспечения сердечной мышцы.

Биоэнергетика сердца. Отражением стрессорной реакции на метаболическом уровне может быть прежде всего адаптационная перестройка энергетического обмена, а именно изменение функционирования систем генерации и потребления энергии [121].

Общее представление о состоянии энергообразовательной функции митохондрий сердца при стрессе можно получить уже исходя из данных сравнительного исследования дыхания органелл с помощью стандартной полярографической техники.

Обработка полярограмм включала определение скорости дыхания митохондрий после последовательных добавок 10 мМ сукцината (V0), 100 мкМ АДФ (V3 и V4), 400 мкМ динитрофенола (V5). Рассчитывались также величины дыхательного контроля ДК л и ДКч по Ларди – Вельману (V3/V2) и по Чансу – Уильямсу (V3/V4).





Полученные результаты приведены в табл. I-1. Истощающий иммобилизационный стресс по Г. Селье [140] отчетливо повышает скорость дыхания митохондрий сердца во всех метаболических состояниях.

Причем увеличение окислительной активности митохондрий сопровождается ухудшением энергетической регуляции дыхания. Динамические параметры дыхательной цепи при стрессе, например коэффициент усиления, отражающий эффективность сопряжения дыхания и фосфорилирования (ДКл), и дыхательный контроль в отрегулированном состоянии, отражающий степень восстановления энергизации митохондрий после рабочей нагрузки (ДКч), существенно снижены по сравнению с нормой, что характеризует работу органелл в режиме утомления с прогрессирующим переходом к низкоэнергетическому состоянию [70].

Явными проявлениями низкоэнергетического сдвига в принятых условиях являются: ослабление энергетической регуляции дыхания (рост дыхания в состоянии покоя (V0) и снижение ДКл), рост дыхания в состоянии V2 и признаки повреждения митохондрий:

относительное снижение окисления сукцината в активном состоянии (V3), в фазе истощения иммобилизационного стресса (72 ч), которое in vitro не устраняется глютаматом, и снижение ДК ч больше, чем ДКл, во все сроки опыта.

Иммобилизационный стресс на фоне тиамина не сопровождается признаками повреждения митохондрий сердца: скорость окисления сукцината в терминальной фазе стресса (72 ч) продолжает нарастать без резкого ухудшения энергетической регуляции дыхания (имеет место относительный рост ДКл, а также одинаковое увеличение ДК л и ДКч), которое наблюдается у стрессировавшихся крыс.

Скорее всего, в принятых условиях тиамин действует как антистрессор:

витаминзависимое снижение амплитуды стероидогенной реакции (рис. I-1) автоматически ограничивает степень активации сукцинатдегидрогеназы стрессорными гормонами [39]. Поскольку добавка ЩУК-устраняющего субстрата (глютамата) in vitro повышает скорость окисления ЯК митохондриями, выделенными из сердца животных, получавших тиамин во все фазы стресса, здесь возможно и другое объяснение.

Таблица I-1.

Влияние тиамина (Т) на окислительную и фосфорилирующую функцию сердца крыс в динамике ИС * Достоверные изменения – p 0,05.

Согласно Г. Селье, существует 2 типа адаптационных механизмов – кататоксические, ответственные за активное сопротивление раздражителю, и синтоксические, обеспечивающие пассивную устойчивость и сосуществование с патогенным воздействием [312].

Примером перехода от кататоксических реакций к синтоксическим является тиаминзависимое ограничение окисления сукцината митохондриями сердца крыс (V3) в динамике истощающего иммобилизационного стресса (табл. I-1). Фактически это ограничение представляет собой синтоксическую реакцию, которая и обеспечивает сосуществование с раздражителем, повышая пассивную устойчивость за счет снижения активных реакций.

Для иммобилизационного стресса показано, что на уровне митохондрий ЩУК-обусловленное ограничение дыхания выполняет функцию синтоксической реакции, предупреждая кататоксическую гиперактивацию окисления сукцината [70]. Известно, что увеличение доли ЯК в общем окислении обеспечивает повышенные энергетические запросы при активности.

Однако эта компенсаторная реакция подобно адаптационным реакциям на уровне организма может становиться чрезмерной и повреждающей. В условиях повышенного содержания жирных кислот и ионов 2+ Са, характерных для стресса, повышается проницаемость мембран митохондрий и возрастает интенсивность окисления субстратов. При этом активируется сукцинатдегидрогеназа и гиперактивное окисление сукцината становится источником дальнейшего повреждения мембраны [69]. На энергизованных митохондриях печени сукцинат обычно оказывает стабилизирующее действие [15], а повреждение органелл при его окислении наблюдается на интенсивно метаболизирующих низкоэнергизованных объектах, таких, как митохондрии сердца голубя и митохондрии патологического сердца человека [148]. Считается, что повреждающее действие ЯК, проявляющееся снижением или потерей дыхательного контроля, обусловлено накоплением протонов и гиперактивным транспортом ионов кальция в митохондрии.

Кальцификация тканей характерна для стресса, и она базируется на гиперактивном окислении сукцината. Интенсификация окисления этого субстрата и транспорта Са в митохондрии наблюдается в ткани сердца человека при тяжелых формах сердечной недостаточности [148]. Залповый импорт кальция в кардиомиоциты после ишемизации сердца ответствен за повреждение миокарда [98]. В таких условиях блокирование дыхательной цепи цианидом предотвращает чрезмерное поступление внешнего кальция в кардиомиоциты и их повреждение [69].

Поскольку тотальное ингибирование дыхательной цепи не может быть использовано в целостном организме для in vivo профилактики повреждения митохондрий сердца крыс, при длительной иммобилизации животных некоторые авторы применяли введение антагониста катехоламинов – серотонина, который снижает дыхание тканевых препаратов [81] предположительно за счет индукции ЩУК-механизма ограничения окисления сукцината и тем самым обеспечивает защиту органелл от стресса [69]. Это допущение согласуется с повышением уровня серотонина в организме при таких типичных проявлениях хронического стресса, как язвенная болезнь желудка и 12-перстной кишки, раздражении электротоком, возбуждении, хирургических операциях и других стрессобусловленных патологических состояниях [81]. Не исключено, что инициация ЩУК-ограничения окисления сукцината митохондриями сердца при стрессе является характерным моментом действия любого антистрессора, в том числе и тиамина.

В присутствии динитрофенола, вызывающего полное разобщение дыхания и фосфорилирования, потребление кислорода митохондриями животных в терминальной фазе истощающего стресса (72 ч опыта) снижено в 1,75 раза (табл. I-1). Это означает, что изменения, выявляемые в митохондриях, изолированных из сердца животных при длительной иммобилизации, выражаются не только в нарушении сопряжения окисления с фосфорилированием, но и в нарушении самого окисления, т. е. транспорта электронов в дыхательной цепи. В соответствии с современными представлениями такие нарушения могут быть обусловлены повреждением липидного бислоя митохондриальных мембран продуктами перекисного окисления липидов (ПОЛ), а также чрезмерной активацией фосфолипаз сердечной мышцы и детергентного действия избытка жирных кислот, возникающего при стрессе в результате повышения секреции катехоламинов [98]. Как видно из табл. І-2, с увеличением экспозиции иммобилизации крыс содержание в сердце продуктов ПОЛ (диеновые конъюгаты, малоновый диальдегид) неуклонно возрастает (с максимумом к 72 ч опыта), а уровень антиоксидантной защиты кардиомиоцитов (активность каталазы, супероксиддисмутазы и содержание эндогенного токоферола) пропорционально падает, т. е. имеет место прогрессирующее нарушение исходной сбалансированности между ферментными системами генерирования и детоксикации липопероксидов за счет стрессзависимого снижения антиоксидантного статуса организма [138].

Предварительное введение нетоксичных доз природных и синтетических антиоксидантов (токоферол, ионол) предупреждает типичную для тяжелого ЭБС активацию ПОЛ в мышце сердца, мозге и других органах. В результате ингибирования ПОЛ не развивается повреждений мембран кардиомиоцитов, нарушения работы Санасоса, окислительного фосфорилирования в митохондриях, избыточной потери миокардом ферментов, транзиторного повреждения и последующей репарации ДНК; предотвращаются депрессия сократительной функции миокарда и постстрессорное снижение устойчивости сердца к гипоксии. Эти факты свидетельствуют о том, что активация ПОЛ действительно составляет ключевое звено патогенетической цепи стрессорной альтерации кардиомиоцитов. Блокирование ПОЛ, устраняющее возможность накопления гидроперекисей липидов в мембранных структурах кардиомиоцитов, очевидно, приводит к стабилизации их липидного бислоя и этот мембранотропный эффект составляет суть кардиопротекторного действия антиоксидантов [98]. В механизме снижения уровня ПОЛ под влиянием антиоксидантов, содержащих гидроксильные группы фенольного типа, наряду с осуществлением их скевенджерной функции «ловушек» супероксидных радикалов важную роль может играть и собственная антистрессорная активность препаратов.

Предварительное введение ионола (2-6-дитретбутил-4-метилфенола) заметно уменьшает амплитуду стрессорной реакции в ответ на эмоционально-болевое воздействие: убыль катехоламинов в надпочечниках у стрессированных животных уменьшается в 2 раза, а подъем концентрации кортикостерона в плазме, обычно наблюдаемый после ЭБС, практически отсутствует [98].

Отсюда не исключено, что в спектре защитного действия любого стресслимитирующего фактора должны присутствовать мембранопротекторные эффекты, реализуемые через снижение уровня ПОЛ, пропорциональное степени индуцированной резистентности организма к данному виду стресса.

Действительно, как видно из табл. І-2, тиамин, который не содержит гидроксильных групп фенольного типа и практически не обладает антиоксидантными свойствами [149], но способный эффективно снижать уровень гормоносинтеза в секреторных клетках коры надпочечников [13] и хромаффинных клетках мозгового вещества адреналовых желез [17] в условиях развития реакции напряжения, тем не менее существенно ограничивает степень активации ПОЛ в миокарде при иммобилизации крыс. Истощающий стресс на фоне тиамина приводит к заметно меньшему приросту продуктов ПОЛ (ДК, МДА) в сердце и соответственно меньшему снижению антиоксидантного потенциала кардиомиоцитов (активности каталазы, супероксиддисмутазы и содержания токоферола), чем у животных, не получавших витамин В1. Поскольку аналогичное действие на антиоксидантный статус организма в принятых условиях оказывает адреналэктомия (табл. I-2), есть все основания считать, что ограничение ПОЛ под влиянием тиамина лимитируется соответствующим снижением уровня стрессорных гормонов в крови крыс, т. е. по сути является антистрессорным эффектом.

Таблица I-2.

Влияние тиамина (Т) на про– и антиоксидантный статус кардиомиоцитов в динамике ИС * Достоверные изменения – p 0,05.

Существуют различные варианты гипотезы перекисной гибели клеток. В модели Ф. Меерсона, адаптированной к кардиомиоцитам, важная роль отводится «липидной триаде», элементы которой при стрессе формируют своеобразный порочный круг с взаимным усилением друг друга: активация ПОЛ – лабилизация лизосом кардиомиоцитов – освобождение лизосомальных фосфолипаз – гидролиз встроенных в мембрану фосфолипидов – образование свободных жирных кислот (ЖК) и лизофосфатидов – нарушение упорядоченности бислойных мембран – увеличение проницаемости их мембран для Са – активация фосфолипаз, что в конечном итоге приводит к необратимому повреждению сарколеммы и внутриклеточных мембранных структур и апоптозу [98].

Известно, что эффективность функционирования биологических мембран существенно зависит от физического состояния их липидов. Одним из информативных методов оценки физического состояния липидов биологических мембран является метод флуоресценции, с использованием флуоресцентных зондов [52]. Мы изучали физические свойства (микровязкость) свободных (липидный бислой) и связанных с белками (анулярных) липидов мембран митохондрий и эндоплазматического ретикулума кардиомиоцитов сердца крыс при иммобилизационном стрессе до и после введения тиамина.

Использование гидрофобного флуоресцентного зонда пирена, инкорпорированного в зону жирнокислотных цепей фосфолипидов, позволяет оценить физические свойства мембраны в местах локализации зонда.

Причем перекрывание спектров поглощения зонда и эмиссии триптофанилов дает возможность селективно, за счет индуктивно-избирательного переноса энергии (ИРПЭ), возбуждать молекулы пирена, расположенные в непосредственной близости к мембранным белкам (анулярные липиды). Возбуждение непосредственно самой молекулы пирена позволяет характеризовать состояние бислойных или свободных липидов [114].

Как видно из табл. I-3, микровязкость свободных липидов (липидного бислоя) микросомальных мембран кардиомиоцитов при хроническом стрессе уменьшается. Минимальное значение регистрируется уже после первого часа иммобилизации и остается на таком уровне до 24 ч опыта. В области анулярных липидов микровязкость также уменьшается, но минимум достигается после 12-часового стрессирования.

Микровязкость бислойных липидов митохондриальных мембран изменяется аналогичным образом.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим

Pages:     | 1 ||



Похожие работы:

«Рабочая программа учебной дисциплины разработана на основе примерной программы,согласованной департаментом локомотивного хозяйства ОАО "РЖД" и утвержденной Департаментом управления персоналом ОАО "РЖД". Содержание программы реализуется в процессе освоения слушателями программы профессиональной подготовки по...»

«Шерил Эберли 365 правил этикета, которые полезно знать каждому ребенку Текст предоставлен правообладателем http://www.litres.ru/pages/biblio_book/?art=12003204 Эберли, Шерил. 365 правил этикета, которые полезно знать каждому ребенку. Игры, занятия и другие вес...»

«энциклопедический словарь / Гл. ред. В. Н. Ярцева. – М. :Сов. энциклопедия, 1990. – С. 9. 6. Расторгуев В.Н. Единодержавие: новые лики тоталитаризма // Вестник Московского университета. Серия 12. Политические науки – 2009. – № 1. – С. 43–50. 8. Ро...»

«1 СОДЕРЖАНИЕ стр.1. ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ 2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ 3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ 12 4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ 14 ПАС...»

«АКТ № 1 проведения плановой проверки за соблюдением требований законодательства Российской Федерации и иных нормативных правовых актов о контрактной системе в сфере закупок администрацией Свободного сельского поселения Приморско-Ахтарского района "21" января 2016 года г. Пр...»

«Государственная Дума Федерального Собрания Российской Федерации ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ " 20 " мая 20 г. No 3433п-П9 МОСКВА О внесении проекта федерального закона О внесении изменений в статью 20 Федерального закона О безопасности дорожного движения и Код...»

«Автономная некоммерческая организация "Национальное агентство развития квалификаций" Федеральное государственное бюджетное учреждение "Научно-исследовательский институт труда и социального страхования" Министерства труда и социальной защиты Российской Федерации Феде...»

«ПАО "РАО ЭС Востока"Юридический адрес: ул. Ленинградская, д.46, г. Хабаровск, Россия, 680021 Почтовые адреса: ул. Образцова, д. 21, стр. А, г. Москва, Россия, 127018 тел.: 8(495) 287 67 01 факс: 8(495) 287 67 02 ул. Ленинградская, д.46, г. Хабаровск, Россия, 680021 тел.: 8(4212) 26 44 03 факс:8(4212) 26 44 02 EBITDA Группы...»









 
2017 www.book.lib-i.ru - «Бесплатная электронная библиотека - электронные ресурсы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.