WWW.BOOK.LIB-I.RU
БЕСПЛАТНАЯ  ИНТЕРНЕТ  БИБЛИОТЕКА - Электронные ресурсы
 

Pages:   || 2 |

«Владимир Викторович Виноградов Стресс и патология Текст предоставлен правообладателем ...»

-- [ Страница 1 ] --

Владимир Викторович Виноградов

Стресс и патология

Текст предоставлен правообладателем

http://www.litres.ru/pages/biblio_book/?art=7062747

Стресс и патология / В. В. Виноградов: Белорусская наука;

Минск; 2007

ISBN 978-985-08-0829-5

Аннотация

Книга посвящена экспериментально-клиническому

изучению роли стресса в развитии стрессобусловленной

кардио– и иммунопатологии. Разработана, испытана

и предложена для внедрения новая научно

обоснованная концепция и соответствующие методы нетрадиционного использования витаминов в клинике.

Научная и практическая значимость работы заключается в реализации предсказательной силы теории некоферментного действия витаминов через оптимизацию существующих клинических методов патогенетической коррекции стрессорных кардиопатий (гипертония и ишемическая болезнь сердца,стенокардия и инфаркт миокарда) и стрессорных иммунодефицитов (сепсис).

Книга рассчитана на медиков и широкий круг специалистов, интересующихся проблемой коррекции кардио– и иммунопатологии стресса.

Содержание Предисловие 6 Принятые сокращения 14 Часть I 18 Введение 18

1. Современные концепции патогенеза 24 и лечения сердечно-сосудистых заболеваний

1.1. Стресс и сердечно-сосудистая 24 патология

1.2. Перспективы витаминокоррекции 60 кардиопатологии

2. Кардиопротекторные эффекты 83 тиамина в эксперименте

2.1. Стрессорные кардиопатии 83 Конец ознакомительного фрагмента. 156 Владимир Викторович Виноградов Стресс и патология



Рецензенты:

доктор медицинских наук, профессор, академик РАЕН Д. К. Новиков;

доктор медицинских наук, профессор В. И. Новикова;

доктор биологических наук, профессор, лауреат Государственной премии Беларуси А. А.

Чиркин;

доктор медицинских наук, профессор В. М. Пырочкин Предисловие Наш рассказ о патологии стресса и способах ее коррекции, очевидно, следует начать с книги, на обложке которой представлена формула тиаминдифосфата (ТДФ) на фоне альтерированного миокарда как символ традиционного лечебного применения витамина В1 при сердечно-сосудистых заболеваниях. Она называется «Кокарбоксилаза и другие тиаминфосфаты» и была написана в 1974 г. под руководством Ю.

М. Островского коллективом в основном молодых авторов, которые с гордостью называли себя «тиаминщиками» и с юношеской безоглядностью и энтузиазмом декларировали свою верность канонам классической витаминологии и прежде всего ее, казалось бы, незыблемому постулату о существовании в тканях апоферментов, т. е. витаминзависимых ферментов, нефункционирующих по причине отсутствия в них простетической части – кофермента.

Все мы свято верили в то, что коферментные витамины необходимы для посттрансляционного достраивания in vivo предсуществующих специфических апоферментных белков до функционально активной холоформы, которая с этого момента начинает выполнять свою биологическую задачу по восстановлению дефектных звеньев в различных метаболических цепях превращения веществ. Эта эйфория продолжалась до тех пор, пока не появились «убийственные»

для теории коферментного действия витаминов факты, которые заставили лично меня радикально пересмотреть свою позицию и написать в 1984 г. свою первую книгу: «Гормональные механизмы метаболического действия тиамина»

Установленный нами факт наличия внутриклеточного депо эндогенного ТДФ, емкость которого многократно превышает потребности витаминзависимых ферментов, и то, что оно организовано за счет легкодоступных, т.





е. не связанных с белками, форм кофермента, фактически исключает возможность проявления in vivo специфической активности вводимого витамина, а отсутствие в гиалоплазме свободной апотранскетолазы делает бессмысленной саму постановку вопроса о коферментном действии вводимого витамина, поскольку здесь исходно устранена возможность акцепции новообразованного ТДФ предсуществующим апоферментом, в чем, собственно, и состоит его смысл.

Идея гормонального опосредования действия витамина возникла после получения нами экспериментальных данных, свидетельствующих о том, что активация транскетолазы в печени В 1-гиповитаминозных крыс при введении тиамина происходит не за счет насыщения новообразованным ТДФ апофермента, которого фактически нет, а в результате стимуляции им дополнительного синтеза ферментного белка. В этих условиях тиамин активно включается в белок транскетолазы в виде С -ТДФ и повышает включение в него С -лейцина. Тиамин способен реактивировать транскетолазу не только у гиповитаминозных животных, у которых тканевое витаминное депо полностью опустошено, но и у адреналэктомированных крыс при его максимальном заполнении в условиях гипокортицизма.

Факты ингибирования транскетолазы на фоне избытка эндогенного ТДФ и ее реактивация экзогенным витамином говорят о том, что ни тот, ни другой не могут быть ее индуктором.

У животных с удаленной поджелудочной железой тиамин уже не способен восстанавливать сниженную активность транскетолазы печени, а инсулин с этим легко справляется. Отсюда следует вывод о гормональном опосредовании действия витамина. Если исходить из того, что транскетолаза – инсулининдуцибельный фермент, печень – орган-мишень для инсулина, а тиамин способен стимулировать инсулинсинтетическую функцию поджелудочной железы, то даже на уровне витаминзависимых реакций регулирующая роль тиамина должна рассматриваться через призму гормонального влияния, поскольку его участие здесь может быть пассивным: кофермент просто достраивает в процессе синтеза на рибосомах новообразующийся под действием гормонов ферментный белок до функционально активной формы.

Теперь важно было доказать, что идея гормонального опосредования действия справедлива не только для тиамина, но и для других витаминов. Поэтому в 1987 г. появилась еще одна книга автора «Некоферментные функции витамина РР», где приведены экспериментальные данные, показывающие, что никотиновая кислота и никотинамид при введении in vivo могут действовать как стресс-агенты, способные неспецифически активировать гипофизадреналовую систему. Следовательно, с помощью витаминов можно целенаправленно воздействовать на стрессреализующие (надпочечники) и стресслимитирующие (инсулярный аппарат поджелудочной железы) системы организма, что предопределяет их применение, не связанное с рутинной компенсацией витаминодефицитов, т. е. обозначился стрессорный вектор дальнейших исследований.

Итак, после выхода этих книг на нашем горизонте отчетливо замаячила проблема стресса и стрессорной патологии, которая наряду с идеей гормонального опосредования действия витаминов потребовала фундаментальной проработки. По результатам проведенных исследований, в том числе и на молекулярном уровне, была написана серия монографий: 1988 г. – «Витаминзависимые ферменты надпочечников» (соавтор С. А. Струмило), 1989 г. – «Гормоны, адаптация и системные реакции организма», 1998 г. – «Стресс: Морфобиология коры надпочечников», 1999 г. – «Стресс и витамины», где очерчены общие перспективы использования полученной информации в клинике. Полученные результаты легли в основу теоретического обоснования постулатов некоферментной витаминологии и послужили предпосылкой для расшифровки биохимических механизмов развития эндокринопатий.

В монографии 2000 г., которая так и называется

– «Некоферментная витаминология», сформулирована достаточно общая теория витаминно-гормональных взаимоотношений, которая позволяет объяснить метаболическую активность вводимых витаминов вне терминов традиционного механизма, т. е. без привлечения коферментной гипотезы.

Некоферментные эффекты, составляющие сейчас почти на 100 % предмет клинической витаминологии, – это метаболическое эхо первичного влияния витаминов на функцию конкретных эндокринных органов, т. е. по сути они результат гормонального опосредования действия витаминов. После многолетней «обкатки» постулатов некоферментной витаминологии на клинической базе Регионального эндокринологического научно-практического центра (г. Гродно) и получения безусловных доказательств работоспособности теории некоферментного действия витаминов в лечебной практике можно было предъявлять ее широкой публике как новую идеологию в медицине.

Повреждения сердца при стрессе сегодня приобретают для клиники все большее значение в связи с тем, что в возникновении и развитии основных заболеваний системы кровообращения важную роль играют тяжелые и часто повторяющиеся стрессорные перегрузки организма.

Прямое следствие стресса – инфаркт миокарда является наиболее часто встречающейся патологией сердца и одной из основных причин смерти больных. Поэтому оправдан поиск средств профилактики и методов коррекции этого тяжелого осложнения стресса. Стратегия поиска может базироваться на непреложном факте, что большинство людей и животных, поставленных в безвыходные стрессорные ситуации, не погибают, а приобретают ту или иную степень резистентности к этим обстоятельствам. Это означает, что организм в принципе изначально обладает механизмами, обеспечивающими совершенную адаптацию к стрессорным воздействиям и возможность выживания в тяжелых экстремальных условиях. Нужно только научиться рационально использовать собственные защитные реакции организма и уметь управлять ими [98].

Такую возможность исследователям и клиницистам предоставляет концепция витаминно-гормональных взаимоотношений, которая опирается на выработанные в процессе эволюции биохимические механизмы гомеостаза и отобранные самой Природой естественные регуляторы адаптации – витамины, являющиеся жизненно необходимыми для организма факторами внешней среды. Научно обоснованная регламентация витаминотерапии и витаминопрофилактики клинических эквивалентов стресса – это главная задача настоящей работы.

Автор глубоко признателен коллегам биохимикам А. В. Арцукевичу, Р. И. Кравчук, Р. Е. Лису, И. И. Степуро, А. Б. Шнейдеру за плодотворное участие в экспериментах, результаты которых легли в основу данной книги, и сердечно благодарит клиницистов В. А.

Басинского, С. В. Виноградова, Т. А. Виноградову, В.

П. Водоевича, В. В. Спаса за высококвалифицированную помощь, позволившую реализовать предсказательную силу концепции витаминно-гормональных связей в лечебной практике для оптимизации стресса.

Принятые сокращения АГ – артериальная гипертензия АД С/Д – артериальное давление систолическое / диастолическое АЗКЦ – антителозависимая клеточная цитотоксичность АКТГ – адренокортикотропный гормон АМФ, АДФ, АТФ – аденозинмоно-, ди– и трифосфат БОК – бляшкообразующие клетки ВИД – вторичный иммунодефицит ГАМК – гаммааминомасляная кислота ГК – гексокиназа ГС – гемосорбция Г-6-Ф – глюкозо-6-фосфат Г-6-Фаза – глюкозо-6-фосфатаза ДАД – диастолическое артериальное давление ДК – диеновые конъюгаты ДНК – дезоксирибонуклеиновая кислота ДНКЖ – динитрозильные комплексы железа ДНФ – динитрофенол ИБС – ишемическая болезнь сердца ИЛ-1, ИЛ-2, ИЛ-6… – интерлейкин-1, -2, -6… ИЛ-2Р – рецептор ИЛ-2 ИМ – инфаркт миокарда ИРИ – иммунореактивный инсулин ИФН- – интерферон КАТ – каталаза КОЕс – колониеобразующие клетки селезенки Кон-А – конканавалин-А ЛПС – липополисахарид МАТ – моноклональные антитела МДА – малоновый диальдегид МРС – минутная работа сердца НК – натуральные киллеры 11-ОКС – 11-оксикортикостероиды ОТ – окситиамин ОПСС – общее периферическое сопротивление сосудов ПОЛ – перекисное окисление липидов ПОН – полиорганная недостаточность ПТИ – протромбиновый индекс ПФП – пентозофосфатный путь РБТЛ – реакция бласттрансформации лимфоцитов РНК – рибонуклеиновая кислота САД – систолическое артериальное давление СОД – супероксиддисмутаза ССЗ – сердечно-сосудистые заболевания СПИД – синдром приобретенного иммунодефицита СКМ – стрессорные кардиомиопатии СПР – саркоплазматический ретикулум Т – тиамин ТДФ – тиаминдифосфат УОК – ударный объем крови УРС – ударная работа сердца УФОК – ультрафиолетовое облучение крови ФАТ – фактор активации тромбоцитов ФГА – фитогемагглютинин ФК – функциональные классы ФНО – фактор некроза опухоли ФППГ – фактор пролиферации предшественников гранулоцитов ЦАМФ – циклический аденозин-3-5-монофосфат цГМФ – циклический гуанозин-3-5-монофосфат ЦНС – центральная нервная система ЦТК – цикл трикарбоновых кислот ЧСС – частота сердечных сокращений ЭБС – эмоционально-болевой стресс ЭДТА – этилендиаминтетраацетат ЭКГ – электрокардиограмма ЭФРС – эндотелиальный фактор релаксации сосудов ЯК – янтарная кислота NAD(H)/ NADF(H) – никотинамидадениндинуклеотид (фосфат) окисленный / восстановленный AICD – гибель клеток, индуцированная активацией B – кортикостерон CARS – синдром компенсаторного анти-воспалительного ответа CD3, CD4, CD8… – субфракции Т-лимфоцитов F – гидрокортизон IgA, IgM, IgG… – субклассы иммуноглобулинов MOD – мультиорганная дисфункция NO – оксид азота PKW – поквидмитоген SIRS – синдром системной воспалительной реакции Th1, Th2 – субклассы Т-хелперов Часть I Кардиопатология Введение В течение последнего столетия структура заболеваемости и смертности в развитых странах принципиально изменилась. Массовые инфекции, которые некогда были бичом человеческой популяции, отодвинулись на второй план, а на первое место уверенно вышла сердечно-сосудистая патология. Как свидетельствуют эпидемиологические и экспериментальные исследования, в возникновении этих заболеваний важную, а иногда и решающую роль играет чрезмерно интенсивная и длительная стресс-реакция, вызванная определенными факторами окружающей среды. Последнее означает, что изучение принципов профилактики стрессорных повреждений составляет необходимый этап в решении ключевой проблемы современной медицины – повышение резистентности здорового организма и профилактики основных неинфекционных заболеваний.

Стресс, ишемия и сочетание этих факторов играют главную роль в возникновении основных заболеваний сердца [98]. Различаясь по этиологии, патогенезу и клинике, стресс-реакция и ишемия в то же время потенцируют друг друга за счет трех основных механизмов. Во-первых, стресс-реакция путем прямого некоронарогенного повреждения проводящей системы и сократительного миокарда может создавать множественные зоны деполяризации и нарушения проводимости. Вызванное стрессом увеличение электрической гетерогенности сердца усугубляется нарушением межклеточных контактов избытком кальция и все это добавляется к вызванным ишемией очагам деполяризации и множественным блокам проводимости. В результате электрическая стабильность сердца, которая даже у совершенно здоровых людей является относительной, серьезно нарушается, и это приводит к тяжелым аритмиям, фибрилляции и остановке сердца. Во-вторых, в определенных условиях стресс может способствовать ускорению развития коронаросклероза, коронароспазма и тромбоза, тем самым усугубляя ишемию и приводя к острому инфаркту миокарда, который, в свою очередь, осложняется аритмией и фибрилляцией желудочков. В-третьих, ишемический очаг или инфаркт сопровождается болью и страхом смерти, что вызывает стресс-реакцию, которая повреждает неишимизированные отделы миокарда, увеличивает нагрузку на сердце и может осложнять течение и ухудшать исход первичного ишемического повреждения. Следовательно, предупреждение, ограничение или исключение стрессорного воздействия на миокард является высокоэффективным средством защиты сердца не только от аритмий, но и от ишемии, вызванной или усугубляемой стрессом.

Предрасположенность и устойчивость организма к стрессорным повреждениям лимитируется функционированием стрессреализующей и стресслимитирующих систем, а также степенью их мобилизации под влиянием стрессора. Исходный уровень активности этих систем детерминирован генетически, т. е. является наследственным, однако может изменяться в процессе жизнедеятельности. Нормализация базальной активности стрессреализующей системы и повышение эффективности стресслимитирующих систем организма либо путем его адаптации к факторам среды, либо фармакологическими методами (с помощью медиаторов или активаторов этих систем) служат одним из факторов повышения и коррекции устойчивости организма к стрессорным воздействиям [98].

Хроническое действие на организм интенсивных эмоциональных стрессоров, вызывающее «застойную» активацию адренергического звена регуляции 2+ тонуса сосудов и нарушение Са -транспортирующей системы в клетках гладкой мышцы сосудов, связанное с адренергической активацией свободно радикального окисления при стрессе, является важным фактором этиологии и патогенеза стойкой артериальной гипертензии и развития гипертонической болезни. Как и стрессчувствительность в целом, так и патологическое действие эмоционального стресса на систему регуляции сосудистого тонуса лимитируется генетически обусловленной или приобретенной предрасположенностью. В основе этой предрасположенности может лежать врожденный или приобретенный дефект функционирования отдельных стресслимитирующих систем, в том числе системы продукции NO.

Ограничение или исключение этого дефекта с помощью соответствующих активаторов является одним из эффективных способов предупреждения и коррекции артериальной гипертензии стрессорной этиологии.

Анализ фармакологических средств, применяемых в настоящее время для коррекции состояний эмоционального стресса и постстрессорных нарушений, показывает, что центральное место среди них занимают препараты, действие которых направлено на ограничение активности стрессреализующей системы и соответственно стресс-реакции. Это либо прямые ингибиторы адренергической системы (блокаторы – и рецепторов), либо препараты, повышающие эффективность естественных стресслимитирующих систем, либо стабильные химические аналоги медиаторов этих систем. Противоишемическими средствами первого ряда всегда были нитровазодилятаторы. В свое время с нитроглицерина и пропранолола началась новая эпоха в кардиологии – эпоха целенаправленной патогенетической коррекции стрессобусловленных сердечно-сосудистых заболеваний. Сейчас фарминдустрия выпускает препараты, сочетающие в себе свойства высокоселективных -адреноблокаторов и NO-зависимых вазодилятаторов (небилет) – новое «высокоточное оружие» против стрессорной кардиопатологии.

Кроме того, в арсенале кардиотерапевта имеются испытанные антистрессорные средства – витамины.

При лечебном использовании больших доз, как правило, не эксплуатируется собственное витаминное начало препаратов и они в этом случае лишь условно могут называться витаминами, фактически являясь биоактивными соединениями с некоферментным механизмом действия, составляющим предмет альтернативной (некоферментной) витаминологии [17,18], практическое значение которой состоит в том, что она позволяет обосновать принципиально отличную от существующей стратегию витаминотерапии и витаминопрофилактики (разработка новых показаний к применению витаминов в лечебной практике). Оптимизация патогенетической коррекции системных нарушений гомеостаза при стрессе сочетанием высокоаффинных кардиотропных средств с антистрессорными витаминами явится существенным вкладом в программу борьбы с заболеваниями сердечно-сосудистой системы, которая предусматривает развитие исследований, направленных на изучение патогенеза и обоснование принципов профилактики стрессорной кардиопатологии.

1. Современные концепции патогенеза и лечения сердечнососудистых заболеваний

1.1. Стресс и сердечнососудистая патология Cтрессорные кардиомиопатии (первичное стрессорное повреждение сердца). Классификационные критерии и термин «стрессорные кардиомиопатии» были введены в клиническую практику М. Цебелином и Ц. Хиршем в 1980 г. после обнаружения признаков дегенеративного поражения пересокращенных миофибрилл сердечной мышцы при ретроспективном обследовании погибших от эмоционального стресса жертв террористических актов, которые не имели травм внутренних органов и каких-либо заболеваний сердца в анамнезе [192]. В отличие от ишемического повреждения при инфаркте миокарда, которое характеризуется коагуляционным некрозом миофибрилл без выраженных полос пересокращения, когда клетки сердечной мышцы гибнут в состоянии расслабления, стрессорное повреждение документируется гиперсокращением участков миокарда с выраженными полосами сокращения миофибрилл и появлением гранулярности, т. е. миофибриллярной дегенерацией [308]. Указанные контрактурные повреждения являются следствием мощного адренергического воздействия на сердце при введении больших доз катехоламинов или электростимуляции зон гипоталамуса, ответственных за симпатическую, но не парасимпатическую регуляцию сердца [306]. Для воспроизведения необратимой альтерации клеточных структур миокарда достаточно 3-часовой экспозиции электростимуляции отрицательных (оборонительных) эмоциогенных центров гипоталамуса (вентромедиальные ядра) у иммобилизованных кроликов (модель острого эмоционального стресса) [153].

Электронномикроскопическими признаками дезинтеграции ультраструктуры кардиомиоцитов в принятых условиях являются резкий внутриклеточный отек и деструкция митохондрий. Структура органелл резко изменена: большинство крист разрушено или фрагментировано, матрикс гомогенизирован. Наружные оболочки разорваны или растворены. Наряду с тотально разрушенными встречаются отдельные митохондрии, полностью или частично сохранившие кристы, находящиеся, очевидно, в разных стадиях процесса разрушения, растворения и гомогенизации содержимого. Миофибриллы в мышечных клетках находятся в состоянии релаксации и пересокращения.

Пучки миофибрилл разволокнены, контуры их размыты, наблюдается гомогенизация миофиламентов, стирание геометрически правильной организации их расположения, диски контурируются нечетко. Форма ядер сердечных миоцитов причудлива, хроматин располагается под оболочкой. Трубочки и цистерны саркотубулярной системы расширены до размера крупных вакуолей. Отмечается расхождение вставочных дисков, мембраны их фрагментированы, местами размыты, широкие промежутки, повторяют зигзагообразную форму диска. Все это указывает на явления острой сердечной недостаточности как на причину гибели части животных при указанном воздействии [109].

Д. Миллер и С. Малов [270] оценивали степень повреждения сердечной мышцы при электроболевом стрессе по выходу из кардиомиоцитов ферментов-маркеров повреждения клеточных мембран и по включению в структуры миокарда меченного технецием радиоактивного пирофосфата. При этом оказалось, что выход ферментов после 4—16 ч электроболевого раздражения был увеличен в 2–3 раза, а величина включения технеция зависела от экспозиции стресса: чем длительнее было стрессорное воздействие, тем больше было включение, а следовательно, и повреждение миокарда.

Изучение механизмов развития стрессорной кардиомиопатии активно проводилось в 70—80-е годы ХХ в. в комплексных физиологических, биохимических и цитологических исследованиях на животных с использованием модели эмоционально-болевого стресса, сходного с «неврозом тревоги» у человека, и иммобилизационного стресса – стресса «неволи, лишения свободы», где было четко показано, что при увеличении интенсивности и экспозиции раздражения адаптивные эффекты стресс-реакции могут превращаться в повреждающие [98,132].

Формирование патогенетической цепи первичного стрессорного повреждения сердца происходит следующим образом. Многократное увеличение действующей на сердце концентрации катехоламинов и других стресс-гормонов стимулирует вхождение Са в кардиомиоциты, мобилизацию резервов гликогена и фосфокреатина, а также реализацию «липидной триады» (активация перекисного окисления липидов, липаз, фосфолипаз и накопление свободных жирных кислот). Именно «липидная триада», продуцирующая гидроперекиси липидов, длинноцепочечные дериваты жирных кислот, лизофосфолипиды, т. е. факторы, обладающие детергентным действием, вызывает лабилизацию лизосом и освобождение протеолитических ферментов. В результате липотропного эффекта, действия лизосомальных протеолитических ферментов и нарушений в системе гликолиза развиваются повреждения мембран сарколеммы, саркоплазматического ретикулума и нарушение функционирования катионных насосов, ответственных за транспорт Са. Блокируются также Na, K, Ca -насос, + 2+ 2+ Na /Са -ионообменник и Са -насос саркоплазматического ретикулума (СПР). При этом угнетение Na, + K -насоса увеличивает внутриклеточное содержание + 2+ Na, что препятствует удалению Са и способствует, подобно сердечным гликозидам, увеличению его содержания в клетке. Торможение функции Са -насоса СПР уменьшает захват Са в СПР и также способствует росту его уровня в саркоплазме. В совокупности с увеличением вхождения Са в клетку это приводит к его избытку в кардиомиоцитах и связанным с этим последствиям – активации «липидной триады» (см. выше) и «кальциевой триады» (собственное повреждающее действие катиона: контрактура миофибрилл, нарушение функции перегруженных кальцием митохондрий, активация протеаз в миофибриллах и фосфолипаз в митохондриях), которые замыкают порочный круг [98].

Оценивая эти факты, следует иметь в виду, что влияние стресса на сердце является по существу адренергическим и реализуется через накопление Са в кардиомиоцитах. Данный феномен играет важную роль в положительном инотропном эффекте катехоламинов и при умеренном стрессе оказывается транзиторным, так как благодаря нормальному функционированию мембранных механизмов ионного транспорта избыток Са быстро удаляется из саркоплазмы. При чрезмерной по длительности стресс-реакции, повреждении мембран и катионных насосов удаление Са из саркоплазмы может оказаться нарушенным, что закономерно приведет к «кальцификации» кардиомиоцитов.

Действительно, исследование кардиомиоцитов гисто-химическими и электронномикроскопическими методами показало, что стресс существенно увеличивает количество пироантимоната Са в субсарколеммальной области, саркоплазме и вокруг митохондрий [132]. Это согласуется с известными данными, что повреждение сердца большими дозами катехоламинов сопровождается увеличением накопления в миокарде 2+ Са [98]. Кстати, «кальцификация» миокарда характерна не только для повреждающего адренергического эффекта, но составляет общее звено патогенеза самых различных повреждений сердечной мышцы – от наследственных кардиопатий до недостаточности гипертрофированного сердца [102].

2+ Увеличение содержания Са в кардиомиоцитах может способствовать чрезмерной активации гликолиза, разобщению окисления и фосфорилирования в митохондриях, нарушению процесса расслабления миофибрилл, вплоть до развития их контрактурного повреждения [98]. Так, эмоционально-болевой стресс сопровождается активацией фосфорилазной системы (переходом В-формы фосфорилазы в А-форму) и снижением на треть резерва гликогена в миокарде [319], разобщением окислительного фосфорилирования [89] и снижением активности креатинфосфокиназы [45]. В совокупности эти сдвиги катионного и энергетического метаболизма закономерно приводят к целому комплексу нарушений электрической стабильности и сократительной функции сердца, который слагается из снижения порога фибрилляции сердца и аритмий [262], нарушения растяжимости сердечной мышцы, ее постстрессорной ригидности [40], депрессии силы сокращения, а также значительного повышения контрактурной реакции миокарда на 2+ избыток Са и гипоксию [98]. Важно, что стрессобусловленные изменения биоэнергетики и сократительной функции, охватывающие миокард в целом, для большинства кардиомиоцитов оказываются обратимыми и постепенно исчезают в течение 3–4 суток. Лишь в ограниченных группах клеток они прогрессируют и приводят к разрушению структур. Соответственно морфологические изменения после перенесенного стресса у животных обычно носят очаговый характер, достигая максимума через 48 ч раздражения, и проявляются при поляризационной микроскопии контрактурой групп мышечных клеток, которая в некоторых местах приводит к формированию микронекрозов, а затем фибробластических гранул и очагов кардиосклероза [98].

Исходя из того, что спектр стрессорных повреждений миокарда аналогичен изменениям, развивающимся в сердце под влиянием больших доз катехоламинов или их синтетического аналога изопротеренола, и может быть в обоих случаях нивелирован большими дозами -адреноблокатора пропранолола, можно заключить, что альтерация кардиомиоцитов при стрессе по сути дела является адренергической.

При СКМ повреждаются не только миокардиальные клетки, но и проводящая система сердца, где 6-часовой эмоционально-болевой стресс приводит к наиболее выраженным дегенеративным изменениям в синусовом узле, умеренным – в атриовентрикулярном узле и наименьшим – в волокнах Пуркинье [159].

Эти повреждения несомненно играют ключевую роль в возникновении постстрессорной электрической гетерогенности миокарда, постстрессорных нарушений электрической стабильности сердца и аритмий. Многодневное периодическое раздражение отрицательных эмоциогенных центров гипоталамуса вызывает у иммобилизованных кроликов появление различных сердечных аритмий: желудочковой экстрасистолии, пароксизмальной желудочковой тахисистолии, стойких приступов мерцания и трепетания предсердий [158]. Все эти нарушения сердечного ритма прекращались после введения 0,5–2,0 мг/кг блокатора адренорецепторов – пропранолола. Атропин (блокатор н-холинорецепторов) и фентоламин (блокатор адренорецепторов) не устраняли этих нарушений. У нескольких животных в первые дни стимуляции наступала внезапная смерть от фибрилляции желудочков сердца. Развитию фибрилляции предшествовало появление одиночных или групповых желудочковых экстрасистол [158].

Б. Лоун и соавторы [262] у иммобилизованных собак вырабатывали условный рефлекс на электроболевое воздействие. После этого только воспроизведение иммобилизационного стресса (помещение животных в станок) приводило к существенному снижению порога аритмий и фибрилляции сердца, т. е. повышало уязвимость сердца к аритмогенным факторам.

Параллельно показано, что аритмогенные эффекты стресса предупреждаются удалением звездчатых симпатических узлов или адреноблокаторами. В то же время стимуляция симпатических сердечных нервов и симпатических узлов репродуцирует аритмогенные эффекты стимуляции среднего мозга даже в условиях стабилизированных АД и ЧСС [262].

Приступы аритмии у людей всегда сопровождаются гиперэкскрецией катехоламинов, а также увеличением продукции цАМФ и уменьшением продукции цГМФ [55]. Поэтому не вызывает сомнений, что возбуждение симпатических нервных центров и адренергическое влияние на сердце играют ключевую роль в патогенезе нейрогенных аритмий. Одновременно выяснилось, что анти-аритмические кардиопротекторные препараты (этмазин, норпайс) не только подавляют активность эктопических очагов в миокарде и снимают сердечные аритмии, но синхронно влияют на биоэлектрическую активность коры лобных долей головного мозга у людей и животных, снижая амплитуду медленных потенциалов в этой зоне. При этом оба эффекта хорошо коррелируют друг с другом [318].

При одновременной регистрации биоэлектрической активности сердца и фронтальной коры при аритмиях, вызванных стрессом, было установлено, что действие стрессора сопровождается возбуждением определенной зоны фронтальной коры. Это означает, что вся цепь последующих «событий», приводящих к фибрилляции сердца, является кортикально обусловленной [77, 318]. Клинической иллюстрацией к этому положению служат данные о том, что у людей с повреждением (выключением) лобных долей головного мозга полностью отсутствуют вегетативные реакции на психологически значимые стимулы (т. е. на эмоциональные стрессоры); эти люди вообще не подвержены стрессу [334].

Согласно [132], механизм аритмогенного действия стресс-реакции можно представить следующим образом. Сигнал о внешнем стрессоре воспринимается соответствующими рецепторами и по таламокортикальной системе передается в таламус и далее в воспринимающие нейроны основной коры больших полушарий, отвечающих за «вход» в кору. Там сигнал «переключается» и поступает во фронтальную кору.

Из фронтальной коры начинается кортикостволовой путь, который соединяет фронтальную кору с таламусом, гипоталамусом и ядрами ствола мозга, непосредственно связанными с регуляцией сердца. Основным звеном этого пути является гипоталамус, который «собирает» информацию от вышележащих отделов головного мозга, а также с периферии и в том числе от сердца. Из гипоталамуса информация при участии стволовых ядер – синего пятна, n. ambiguus и др. поступает в нейроны ядер продолговатого мозга, осуществляющих симпатическую и парасимпатическую иннервацию сердца. При этом именно преобладание симпатического «выхода» на сердце создает аритмогенную ситуацию. Электрическая стимуляция или функциональная блокада этого триггерного пути вызывает соответственно либо фибрилляцию сердца, либо ее предотвращение (при эмоционально-болевом стрессе) [261]. Холодовая блокада подкорковой зоны и амигдалы вызывает предупреждение возникновения аритмий при эмоциональном стрессе, а также предупреждает возникновение фибрилляции сердца и гибель животных при острой ишемии сердца. Интрацеребральное введение -адреноблокаторов может воздействовать непосредственно на механизм инициации активности в триггерном пути либо предупреждать переключение центральной информации в триггерном пути на вегетативный «выход», либо и то и другое. Существенно, что этот механизм, первично обусловленный стрессорным воздействием, может «закрепиться» благодаря формированию патологической доминанты (по А. Ухтомскому), или патологической системы «застойно» возбужденных центров [77], или за счет «длительного циклического движения процессов возбуждения» между кортиколимбическими структурами [153].

Следует подчеркнуть роль адренергического эффекта стресс-реакции как фактора, приводящего к возникновению сердечных аритмий. Во-первых, усиление симпатической составляющей в хронорегуляции сердечных сокращений при стрессе создает преобладание адренергического влияния над холинергическим и тем самым вызывает анахронизм в работе водителей ритма. Уже одно это может вызвать аритмии сердца вплоть до фибрилляции желудочков.

Во-вторых, однократное мощное стрессорное воздействие экстремальной ситуации, а тем более ее повторные эпизоды за счет усиления адренергического влияния на сердце вызывают первичное стрессорное повреждение микроструктур сердечной мышцы и очаговые микронекрозы [132].

У кроликов с выраженными нарушениями ритма ультраструктура клеток миокарда значительно отличалась от нормы. У большинства опытных животных обнаруживаются очаги пересокращения. В этих участках миофибриллы теряли четкость протофибрилл и становились более электронноплотными. Длина саркомера таких миофибрилл была меньше минимальной и не одинаковой на протяжении данного участка. Саркоплазматическая сеть местами значительно расширена. Большинство митохондрий имели разную степень разрушения наружной мембраны и кристного аппарата. Иногда органеллы полностью теряли эту мембрану, а деструкция крист заходила настолько далеко, что митохондрии представляли собой сплошную гомогенную массу повышенной электронной плотности [109]. Все эти изменения миокарда присущи мерцательной аритмии, однако наиболее характерными изменениями при стойких нарушениях ритма являются повреждения саркотубулярной системы (резкое расширение трубочек и цистерн), играющей важную роль в распространении возбуждения по миокардиальной клетке, которые могут привести к замедлению проведения импульса и возникновению блоков проведения, т. е. к прогрессированию возникшей в миокарде фибрилляции [122]. Этот комплекс изменений знаменует собой нарушение функционирования мембранного аппарата кардиомиоцитов, который осуществляет генерацию и проведение возбуждения, и может играть существенную роль в возникновении эктопических очагов, из которых исходят «преждевременные» импульсы.

Клиническое значение вышеприведенных фактов состоит в том, что выраженные стрессорные повреждения проводящей системы сердца, энергетическое истощение, дисфункция энергопотребляющего (миофибриллы) и энергообразующего (митохондрии) аппарата кардиомиоцитов, а также нарушение саркотубулярной системы могут сопровождаться различными блоками проведения, например блокадой правой ножки пучка Гиса у ранее практически здоровых людей после перенесенного стресса, что может считаться главной причиной фибрилляции желудочков и внезапной сердечной смерти.

Ишемическая болезнь сердца. Многообразные нарушения регуляции гомеостаза, формирующие патогенетическую цепь ишемической болезни и ее исход, нередко даже летальный, часто детерминированы чрезмерной по силе и длительности стресс-реакцией организма.

Последняя в сочетании с основными этиологическими факторами ИБС (наследственные, алиментарные и стрессорные нарушения липидного обмена – гиперхолестеринемия и гиперлипидемия) лимитирует патогенетические сдвиги, непосредственно приводящие к ишемии миокарда: стенозирующий атеросклероз коронарных артерий, спазм коронарных артерий и нарушение реологических свойств крови, вплоть до тромбозов коронарных артерий [98].

Стресс и гиперхолестеринемия. Главные этиологические факторы ИБС – избыток холестерина в пище и генетически обусловленные дефекты механизмов захвата и элиминирования излишков холестерина в печени в совокупности вызывают атерогенную дислипопротеидемию и способствуют развитию стенозирующего коронарного атеросклероза. Ярким примером здесь является «семейная» гиперхолестеринемия, приводящая к коронарному атеросклерозу в связи с генетическим дефектом механизма захвата и катаболизма атерогенных липопротеидов низкой плотности в печени [134]. В то же время негативное стрессорное «давление» окружающей среды на организм может давать свой вклад в развитие дислипопротеидемий. Известно, что нейрогенный, по существу стрессорный атеросклероз у животных можно получить частой сменой («сшибкой») условно-рефлекторных стереотипов, с помощью эмоционального возбуждения, вызываемого прерывистым голоданием или длительной электростимуляцией вентромедиального гипоталамуса, а также созданием психосоциального стресса [195].

При эпидемиологических исследованиях четко установлен факт, что случаи возникновения коронарного атеросклероза, ИБС и связанного с ИБС инфаркта миокарда особенно часто встречаются у людей, чья профессия или образ жизни сопряжены с эмоциональным стрессом [252]. Трудная психосоциальная ситуация вызывает у людей дислипидопротеидемию, т. е. увеличение в крови уровня холестерина во фракции липопротеидов низкой плотности и рост индекса атерогенности [125]. Показано, что стрессорная ситуация на работе приводит к нарушению функции печени [244].

Интенсивное разноэкспозиционное эмоционально-болевое раздражение животных приводит к атерогенной дислипопротеидемии, которая при хроническом стрессе сопровождается развитием коронарного атеросклероза [195], что может быть следствием стрессорного поражения печени и развития «печеночной» гиперхолестеринемии за счет нарушения в органе процессов окисления холестерина, превращения его в желчные кислоты и выведения из организма [101].

На повреждение печени прямо указывает снижение в крови опытных животных лецитинхолестеринацетил-трансферазы, которая синтезируется в гепатоцитах, и резкое повышение содержания в ней другого фермента – фруктозо-1,6-дифосфатальдолазы – специфического маркера альтерации печеночных клеток, что, очевидно, обусловлено чрезмерной активацией перекисного окисления липидов в этом органе. Действительно, появлению в крови фруктозо-1,6-дифосфатальдолазы всегда сопутствует накопление малонового альдегида в печени на фоне снижения в ней активности антиоксидантного фермента супероксиддисмутазы [155].

Отсюда следует, что гиперхолестеринемия и атерогенная дислипопротеидемия обусловлены глубокими стрессорными нарушениями структуры и функции печени и нарушениями процесса удаления холестерина из организма. В результате этого, даже при отсутствии избытка холестерина в пище, стресс может приводить к развитию стенозирующего коронарного склероза и играет важную роль в развитии ИБС [132].

Стресс и коронароспазм. С помощью коронарографии было доказано, что сильный адренергический компонент стресс-реакции может приводить к спазму гладкой мускулатуры анатомически интактных коронарных артерий, и этот достаточно стойкий спазм становится причиной вторичного ишемического поражения миокарда. На первый взгляд, превращение адаптивного эффекта увеличения коронарного кровотока в повреждающий представляется маловероятным, так как показано, что в сердце -адренергический эффект катехоламинов может стимулировать коронародилятацию и «рабочую гиперемию» миокарда [178]. Однако при большой длительности стресса, особенно при эмоциональном стрессе, высокие концентрации в крови адреналина, вазопрессина и гистамина могут приводить к десентизации -адренергических рецепторов и реализации эффектов катехоламинов через констрикторные -рецепторы. В экспериментах такой спазм коронарных сосудов был показан при действии вазопрессина [161] и норадреналина [178]. Коронароспазм под влиянием сильного стресса зафиксирован у практически здоровых людей [359]. Отмечено, что при внутривенном введении катехоламины проявляют фазовый характер действия: вначале в ответ на норадреналин коронарный кровоток увеличивался, затем возвращался к исходному уровню, после чего сопротивление коронарного русла возрастало вдвое, кровоток снижался и 48 ч спустя развивалось ишемическое повреждение сердца. На фоне блокатора -адренорецепторов фентоламина коронароспазм и ишемизация миокарда не возникали [316].

Считается, что важную роль в регуляции коронарного кровотока играет оксид азота (NO) – мощный вазодилятатор. Известно, что умеренный стресс увеличивает продукцию NO, и это, очевидно, обусловливает развитие «рабочей гиперемии». При длительном и интенсивном раздражении генерация NO снижается, и этот факт, очевидно, может быть одной из решающих причин возникновения стрессорного коронароспазма [90]. Поэтому при стенокардии помогают нитроглицерин и другие NO-доноры.

Стресс и коронаротромбоз. Стрессиндуцированный выброс катехоламинов в кровь потенцирует свертывание крови и тромбоз коронарных сосудов [231].

Следствием возникающей при этом агрегации тромбоцитов является выделение из них мощных вазоактивных веществ, особенно тромбоксана А2 [209], серотонина и гистамина, которые заведомо усиливают спазм и в сочетании с тромбозом делают его более опасным в плане развития ишемии и инфаркта миокарда. Холтер-мониторирование ЭКГ у 126 больных, страдающих коронарной болезнью, показало, что эмоциональный («ментальный») стресс вызывал у них резкие ишемические изменения электрокардиограммы [276]. При этом важную роль в роковом усугублении коронарной болезни играет стрессиндуцированный тромбоз [181, 252]. Показано, что у военных летчиков один ответственный полет на истребителе вызывает повышение активности тромбина в 2 раза [181]. В связи с этим необходимо отметить, что гормоны коры надпочечников, участвующие наряду с катехоламинами в формировании стресс-реакции, также влияют на реологические свойства крови

– сокращают время свертывания, уменьшают фибринолитическую активность [98], что может резко ухудшать микроциркуляцию в миокарде и интенсифицировать тромбообразование во всех отделах коронарной системы.

Стресс и ишемия миокарда. Ишемия миокарда, сопровождающаяся выключением дыхательной цепи митохондрий, закономерно вызывает боль и усиливает стресс-реакцию, увеличивая через стимуляцию адренергической системы продукцию катехоламинов в организме [132]. Эти сдвиги, если они не устраняются эндогенными механизмами поддержания гомеостаза или своевременной терапией, приводят к ингибированию цикла трикарбоновых кислот и дефициту АТФ, что, в свою очередь, вызывает активацию и последующее торможение гликолиза, нарушение окисления жирных кислот и их накопление в сердечной мышце [98]. Одновременно происходят ингибирование медленного канала электрогенного вхождения Са в кардиомиоциты и мгновенная обратимая депрессия сократительной активности сердца, что играет важную роль, с одной стороны, в нарушении его насосной функции, а с другой – в ограничении энергетических потребностей ишемизированного миокарда и предупреждении его необратимого повреждения [138].

Вслед за кратковременным торможением медленного Са -канала развивается обратимая блокада АТФ-зависимых катионных насосов и, как следствие, – избыток Са в саркоплазме, что в свою очередь может привести к развитию уже малообратимых изменений в липидном бислое мембран миокардиальной клетки – так называемой «липидной триаде» повреждения мембран, которая потенцируется главным образом избытком катехоламинов и слагается из активации липаз и фосфолипаз, детергентного действия повышенного содержания жирных кислот и лизофосфолипидов на мембраны и из активации перекисного окисления липидов. Развитие липидной триады приводит к лабилизации лизосом, повреждению сарколеммы и миофибрилл, саркоплазматического ретикулума и митохондрий, а также к увеличению проницаемости этих мембранных структур для 2+ Са [102].

Обратимость или, напротив, необратимость этих повреждений определяется степенью их выраженности. При длительной ишемии повреждения мембранных структур прогрессируют и предопределяют развитие финального процесса – некробиоза. Избыток 2+ Са, возникший в результате повреждения сарколеммы, приводит к контрактуре миофибрилл и разрушению их миофибриллярными протеазами, вызывает дополнительную активацию липидной триады и стимулирует таким образом разрушение мембран саркоплазматического ретикулума и митохондрий [100]. В итоге необратимо поврежденными оказываются все основные органеллы кардиомиоцита, что приводит к гибели этих клеток и прекращению сократительной функции ишемизированного участка сердечной мышцы [245].

Таким образом, стресс-реакция является чрезвычайно важным фактором возникновения, течения и исхода ИБС.

Артериальная гипертензия. Важная роль длительного «эмоционального перенапряжения» в этиологии и патогенезе артериальной гипертензии сейчас никем не оспаривается, поскольку давно замечено, что причины и усугубление ее течения в значительной степени связаны с воздействием стрессогенных жизненных ситуаций [12]. Умеренные, но социально значимые стрессоры способны инициировать постоянные «всплески» подъема артериального давления (АД), что может вызывать структурные изменения (утолщение) сосудистой стенки и приводить далее к стойкой гипертонии [219]. Развитие хронической гипертензии наблюдали у исходно нормотензивных крыс при психосоциальном стрессе [236].

Cтрессорная гипертензия. Значение эмоционального стресса и лимитирующая роль катехоламинов и кортикостероидов в генезе артериальной гипертензии четко продемонстрированы в опытах на адреналэктомированных кроликах с электростимуляцией вентромедиальных ядер гипоталамуса и введением стрессорных гормонов [4]. Проведенные эксперименты показали следующее: двусторонняя адреналэктомия приводит к падению среднего артериального давления, а компенсаторное введение гормонов адреналэктомированным животным восстанавливает его исходный уровень. Многочасовая стимуляция отрицательных эмоциогенных центров у адреналэктомированных кроликов обеспечивает первую транзиторную фазу гипертензии (повышение АД на 40–50 мм рт. ст.). Раздельное подкожное введение гидрокортизона или адреналина таким животным увеличивает начальное повышение АД в ответ на стимуляцию вентромедиальных ядер гипоталамуса; затем оно снижалось до исходного уровня. Только после комбинированного применения обоих гормонов электрораздражение отрицательных эмоциогенных центров вызывало вторичное устойчивое повышение АД. Следовательно, для формирования устойчивой артериальной гипертензии эмоционального происхождения необходимо совместное включение в патогенетический процесс гормонов коркового и мозгового слоев надпочечников. Мишенью аддитивного действия стрессорных гормонов, очевидно, является ретикулярная формация среднего мозга, поскольку раздельные и совместные микроинъекции адреналина и гидрокортизона в эту область перед электростимуляцией вентромедиальных ядер гипоталамуса у адреналэктомированных кроликов вызывали такие же гипертензивные эффекты, как и при подкожном введении [153]. Показано, что при двусторонней коагуляции ретикулярной формации на уровне моста мозга (разрушались вентральные и дорсальные части передних сетчатых ядер моста) раздражение вентромедиального ядра гипоталамуса адреналэктомированных животных после введения им гидрокортизона и адреналина уже не приводило к артериальной гипертензии 4]. Отсюда следует, что активация гормоносинтеза в корковой и хромаффинной ткани адреналовых желез при эмоциональном стрессе обеспечивает вторую фазу развития гипертензии и это происходит за счет вторичного тонизирующего действия кортикостероидов и катехоламинов на ретикулярную формацию. Вследствие этого усиливаются тонические влияния на сосудосуживающие центры продолговатого мозга, что обусловливает стойкое преобладание прессорных влияний на периферические артериальные сосуды и развитие устойчивой артериальной гипертензии. Создается своеобразный порочный круг, когда первично возникающее под влиянием острого эмоционального стресса возбуждение лимбико-ретикулярных структур мозга вторично устойчиво поддерживается обратным («восходящим») действием на них гормонов надпочечников.

Это в свою очередь порождает непрерывные тонические нисходящие влияния на сосуды, в результате чего формируется устойчивая артериальная гипертензия [153].

Клеточный ресетинг. Важную роль в реализации стрессорного повышения АД играют нарушения внутриклеточного гомеостаза Са. Согласно мембранной концепции Ю. Постнова, основой патогенеза первичной гипертензии является нарушение ионтранспортной функции клеточных мембран, проявляющееся снижением их способности поддерживать в цитоплазме клеток нормальные величины градиента концентрации важнейших ионов (Na, K, Ca, Mg ) по отношению к внеклеточной среде [129]. Ключевым следствием мембранного дефекта, проявляющегося изменением функционирования некоторых ионтранспортных систем плазматической мембраны и аккумулирующей способности кальциевых депо (эндоплазматического ретикулума, митохондрий), является смещение пределов регуляции стационарной концентрации свободного кальция цитоплазмы в сторону более высоких, чем в норме, значений с последующим развитием клеточного ресетинга – функциональной адаптации клетки к кальциевой перегрузке.

Сохранение специфической функции лимитируется взаимодействием клетки – носителя дефекта (клеточной мишени) – с гормонами и медиаторами, а через них с системами, осуществляющими в организме интегративную функцию. Примером такой адаптивной перестройки клетки служит изменение мембранной сигнальной системы 2-адренорецептор – аденилатциклаза (уменьшение чувствительности к норадреналину), обнаруженное в мембранах липоцитов жировой ткани крыс SHR со спонтанной гипертензией [131], в лимфоцитах [128], а также в жировых клетках [130] больных с эссенциальной гипертензией. Важно отметить, что во всех этих случаях катехоламинорезистентность проявлялась, несмотря на значительное увеличение числа рецепторов, отличающимся, однако, от нормы более низким сродством к лиганду. Совершенно очевидно, что адекватный ответ клетки (т. е. полная компенсация ее функции при ресетинге) будет достигаться в этих условиях при существенно более высоком уровне адренергического влияния (симпатической активности). Таким образом, кальциевая мембранопатия эффекторных клеток воздействует на симпато-ад-реналовую систему как бы изнутри, т. е. со стороны обширной клеточно-тканевой мишени, возбуждая гиперактивацию биосинтеза катехоламинов. То же касается и стероидогенеза. Как показали опыты на адреналэктомированных крысах SHR, клеточный ресетинг при первичной гипертензии достигается с обязательным участием кортикостероидов [127]. Возрастающее потребление стероидных гормонов тканями составляет, по-видимому, одну из причин гипертрофии (гиперфункции) коры надпочечников, которая постоянно наблюдается при первичной гипертензии, особенно на начальных стадиях ее развития до возникновения структурно-морфологических изменений в органах и сердечно-сосудистой системе. При широкой распространенности экспрессии мембранных нарушений влияние со стороны клеточной мишени является также причиной инсулинорезистентности и гиперинсулинемии, характерных для гипертензии [60]. Таким образом, есть основания полагать, что основное проявление метаболического синдрома при первичной гипертензии, определяющее развитие сахарного диабета II типа, – повышенная резистентность тканей к инсулину – органически связано с кальциевой перегрузкой клеток как следствия недостаточности мембранной регуляции внутриклеточного распределения этого катиона. Феномен гиперинсулинемии рассматривается при этом как мера компенсации высокой резистентности тканей к инсулину в целях сохранения клеточной функции [128].

С последовательным развитием «переключения» (ресетинга) почечного баростата, поддерживающего АД на уровне, обеспечивающем достаточную экскрецию, достигается функциональное равновесие между главными системами регуляции водно-солевого гомеостаза организма – плазматической мембраной клеток и почкой. Стабилизация гипертензии и ее необратимость обеспечиваются развитием структурно-морфологических изменений в артериальной части сосудистого русла (включая сосуды почек) и почечной медулле. Мощным фактором стабилизации и «хронизации» гипертензии являются необходимость обеспечения достаточного перфузионного давления для осуществления ауторегуляции мозгового кровообращения при возросшем церебрососудистом сопротивлении [206], а также ресетинг систем, контролирующих уровень системного АД (синокаротидная барорецепция, ренин-ангиотензиновая система и др.) [127].

Такова общая конструкция патогенеза первичной гипертезии, составляющая основу мембранной концепции. Она показывает, что артериальная гипертензия – это естественное и непременное качество конкретного организма, обусловленное особенностями клеточного метаболизма, и делает понятным, почему действие известных лекарственных гипотензивных средств всегда транзиторно, а высокое давление неминуемо возвращается к прежнему уровню после их отмены.

Однако в представленном виде концепция не рассматривает роль инсулина в ресетинге клеток, а значит, и в патогенезе гипертензии, что требует уточнения.

По сути дела инсулин является фактором, противодействующим ресетингу, поскольку он блокирует не только механизм его инициирования за счет снижения содержания Са в цитозоле клеток-мишеней [71], но и механизм его стабилизации, снижая содержание катехоламинов [355] и кортикостероидов [177] в крови при стрессе. Если, несмотря на это, ресетинг является фактом и тем более воспроизводится на фоне гиперинсулинемии [128], то последнее означает, что антиресетинговое действие инсулина в принятых условиях не проявляется. Очевидно, при экспрессии мембранных нарушений в первую очередь и главным образом повреждаются инсулиновые рецепторы, что обусловлено смещением пределов регуляции гомеостаза Са, определяемым геномом [128]. В литературе рассматривается возможность влияния на тканевую чувствительность к инсулину избытка свободного цитозольного Са [284] и сниженного внутриклеточного содержания Mg [189] как результата генетически обусловленного нарушения функции инсулиновых рецепторов или, более вероятно, пострецепторного дефекта [272].

Перечисленные выше факторы интересны, прежде всего, в контексте первичного нарушения чувствительности к инсулину. Но на нее влияют и многочисленные вторичные факторы, такие, как ожирение, голодание, высокий уровень свободных жирных кислот в крови, гипергликемия, лихорадка, повышенная концентрация в крови контринсулярных гормонов (кортикостероиды, катехоламины, глюкагон), старение оргнизма, наличие антител к рецепторам инсулина и самому инсулину и многие другие [60]. В этом смысле примечателен патогенез стероидного диабета [5]. Показано, что у крыс глюкокортикостероиды вызывают гипергликемию через подавление утилизации глюкозы в тканях, повышают скорость ее новобразования в глюконеогенезе, активируют липолиз с повышенным поступлением свободных жирных кислот в кровь. Развивается выраженная инсулинорезистентность [221].

В ответ на это компенсаторно повышается продукция инсулина поджелудочной железой, о чем свидетельствуют высокий уровень ИРИ в крови и гистоструктурные изменения (гиперплазия) островкового аппарата [191]. При длительном введении высоких доз глюкокортикостероидов наступает истощение компенсаторных механизмов, морфологически проявляющееся гидропической дегенерацией -клеток [356].

Подобный сценарий поэтапного развития устойчивого стероидного диабета вполне реален для АГ, которая практически всегда сопровождается хроническим гиперкортицизмом. При первичной гипертензии крыс (SHR) еще в начале 1970-х годов была обнаружена редукция островков Лангерганса с морфологическими проявлениями снижения секреторной активности -клеток [296]. Позже эти результаты были подтверждены в опытах с использованием абсолютного генетического контроля к SHR – нормотензивных крыс линии WKY. Морфологическая характеристика эндокринной части поджелудочной железы у крыс SHR позволяет сделать заключение о наличии у них атрофии или, возможно, гипоплазии островкового аппарата. Основанием для такого заключения служат данные о почти 50 %-ном уменьшении массы островковой ткани и почти 40 %-ном уменьшении числа островков у крыс SHR по сравнению с WKY. Кроме того, у SHR сами -клетки обладают сниженной способностью к секреции инсулина [8].

Если исходить из того, что артериальная гипертензия часто сочетается с явным инсулинодефицитом (сахарный диабет I типа), а инсулинорезистентность (даже при наличии гиперинсулинемии) при сахарном диабете II типа документирует факт выпадения инсулинового звена регуляции гомеостаза, то эта констатация ставит под сомнение роль инсулина в развитии АГ. Строго говоря, бытующее представление об этиологической роли инсулиннезависимого сахарного диабета в генезе АГ [60] является не более чем гипотезой, поскольку имеющиеся экспериментальные и клинические данные о возможной причинной (или патогенетической) связи между инсулинорезистентностью, гиперинсулинемией и гипертензией достаточно противоречивы [60]. Нет и убедительных доказательств прямого гипертензивного действия инсулина при хронической гиперинсулинемии у человека [225].

Напротив, у больных сахарным диабетом ІІ типа инсулинотерапия улучшает эндотелийзависимую и эндотелийнезависимую вазодилятацию [346]. В то же время известно, что первичная гиперинсулинемия с вторичной инсулинорезистентностью у больных с опухолями островкового аппарата поджелудочной железы (инсулиномами) к АГ не приводит [310], а у больных с первичной артериальной гипертензией без признаков ожирения и не имеющих в семейном анамнезе инсулиннезависимого сахарного диабета состояние инсулинорезистентности обычно не выявляется [266].

Генетическая предрасположенность. Генетически обусловленная предрасположенность к стрессорным нарушениям регуляции сосудистого тонуса является важным фактором этиологии и патогенеза артериальной гипертензии. По мнению Г. Ф. Ланга, гипертония возникает не у всех людей, а только у тех, у которых есть «некие качества», которые предрасполагают к этому заболеванию, и среди них важное место занимают «конституциональные особенности нервной системы» [83]. Нолл с соавторами [283] изучали реакцию на эмоциональный стресс и гипоксию у людей с нормальным АД, родители которых были также «нормотензивными», и у людей с нормальным АД, родители которых страдали эссенциальной гипертонией.

Реакция на гипоксию была одинаковой у всех испытуемых, а чувствительными к ментальному стрессу оказались только пациенты с отягощенным анамнезом:

у них в ответ на раздражение резко увеличивались показатели активности симпатической системы (АД, уровень норадреналина и эндетелина в крови, имульсация мышечных симпатических нервов). Следовательно, у людей, родители которых страдали гипертонией, имела место генетически обусловленная повышенная реактивность симпатического звена нервной системы к стрессу.

Ярким примером генетической обусловленности гипертензивного эффекта стресса является реакция на различного рода эмоциональные стрессоры у крыс с наследственной спонтанной гипертензией (линия SHR). При сопоставлении сдвигов АД на стрессоры у SHR и крыс линии Вистар показано, что у крыс Вистар в ответ на стрессоры увеличение АД составляло в среднем 15 мм рт. ст., а у SHR – 40–50 мм рт. ст., при этом максимально достижимое АД составляло у Вистар 165 мм рт. ст., а у SHR – более 200 мм рт. ст. [210].

Таким образом, существует предрасположенность к стрессорному повышению АД и развитию стойкой гипертензии, в основе которой лежит лабильность (повышенная возбудимость) сосудосуживающих нейрогуморальных систем. Резистентность к стрессорной гипертензии определяется состоянием стрессреализующих и стресслимитирующих систем. Показано, что у крыс SHR врожденная увеличенная активность симпато-адреналового звена стрессреализующей системы [357] связана с врожденным дефицитом активности стресслимитирующих систем: ГАМК-ергической [232], опиоидергической [208], инсулинергической [8, 296] и др.

Показана также роль NO-ергической стресслимитирующей системы [90] в поддержании нормального уровня АД. Хроническое ингибирование NO-синтазы и соответственно уменьшение продукции NO приводит у крыс к активации прессорных систем – адренергической и ренин-ангиотензиновой, что выражается в повышении содержания в крови адреналина, норадреналина, ренина и развитии стойкой гипертензии [360].

Из вышеизложенного следует, что важную роль в механизме устойчивости организма к стрессорным повреждениям и соответственно в патогенезе стрессорной патологии играют активность и реактивность стрессреализующей и стресслимитирующих систем.

Естественные медиаторы стресслимитирующих систем или их активаторы повышают устойчивость организма к стрессорным повреждениям и оказывают профилактическое и терапевтическое действие при стрессорных воздействиях главным образом за счет ограничения чрезмерной или «застойной» стресс-реакции. В связи с этим способы профилактики и коррекции стрессорных повреждений принципиально ясны – это применение методов и средств, повышающих эффективность естественных стресслимитирующих систем.

1.2. Перспективы витаминокоррекции кардиопатологии Исходя из экспериментальных и клинических данных, кажется совершенно очевидным, что альтернатива осуществления специфического (коферментного) механизма действия витаминов сохраняется только для гиповитаминозного состояния [18]. В случае, когда позитивный эффект витаминотерапии проявляется при нормальном и тем более повышенном исходном содержании соответствующих коферментов в тканях, вероятно, можно говорить лишь о каком-то опосредованном действии экзогенного витамина, что автоматически ставит вопрос о целесообразности его применения в данной ситуации. Действительно, зачем применять витамин, если тот же лечебный результат можно получить с помощью иных средств, возможно, еще более эффективных? С другой стороны, знание особенностей конкретного механизма опосредования витаминного действия позволяет оценить его недостатки или преимущества перед альтернативными способами лечения, что дает возможность обоснованно и целенаправленно эксплуатировать его «побочные» эффекты для устранения патологии, не связанной с развитием вторичных гиповитаминозов [17, 18].

Тиамин. Согласно существующим представлениям, витамин В1 играет важную роль в энергообеспечении сократительной функции сердечной мышцы и обновлении ее клеточных структур [144]. Эти представления базируются на допущении, что ТДФ через стимуляцию окисления субстратов в пируват– и

-кетоглютаратдегидрогеназных реакциях ЦТК способен усиливать генерацию энергии в сердце, а через транскетолазу может контролировать синтез рибозо-5-фосфата и восстановительных эквивалентов в ПФП, необходимых для удовлетворения пластических нужд миокарда [112, 145]. Отсюда, на первый взгляд, кажется совершенно логичным предложение использовать тиамин прежде всего для профилактики недостаточности сердца в ситуациях, сопровождающихся компенсаторной гипертрофией миокарда, когда в органе резко усиливаются процессы энергопотребления и пластики. Диапазон лечебного применения витамина здесь мог быть чрезвычайно обширным, так как клиническим эквивалентом подобного состояния являются различные пороки сердца, сопровождающиеся сужением клапанных отверстий, стеноз аорты, компенсаторная гиперфункция миокарда вследствие выключения части органа из акта сокращения при инфаркте и т. д.

Хорошо известно, что необходимой предпосылкой проявления специфического действия витамина на уровне витаминзависимых ферментов является состояние гиповитаминоза, т. е. дефицит кофермента в тканях. Если это условие выполняется, то показания к применению тиамина становятся очевидными.

Оказывается, что в процессе развития компенсаторной гипертрофии мышцы сердца уровень ТДФ в ней не уменьшается, а увеличивается. Такие данные получены при экспериментальном стенозе аорты [145], инфаркте миокарда [112] и др. Отмечено увеличение содержания витамина в скелетных мышцах и сердце животных, совершавших усиленную работу [162].

При этом скорость накопления тиамина в сердце с самого начала опыта соответствует темпу нарастания его массы и продолжает повышаться в течение некоторого времени даже после того, как мышца сердца уже перестает увеличивать свои размеры [145].

По всей вероятности, этот процесс обеспечивается за счет осуществления механизма перераспределения тиамина из других тканей. Последнее обстоятельство заставляет усомниться в необходимости дополнительного введения витамина в тех случаях, когда собственные каналы витаминной регуляции метаболизма в сердце полностью задействованы «эндогенным» коферментом. Рассчитывать на возможность реализации специфической активности экзогенного тиамина в принятых условиях, очевидно, не приходится, поскольку транскетолаза и, вероятно, витаминзависимые дегидрогеназы ЦТК в гипертрофирующемся сердце уже и без того активированы [358].

Кроме того, нужно иметь в виду, что сама исходная посылка о возможности поддержания тиамином пластики и энергообразования в сердце встречает возражения. Дело в том, что в этом органе ПФП в силу своей сравнительно малой мощности, очевидно, не может рассматриваться как единственный, а тем более основной поставщик пентоз, необходимых для синтеза нуклеотидов и нуклеиновых кислот. Ранее мы уже обращали внимание на это обстоятельство, подчеркивая, что миокард, по-видимому, удовлетворяет свои потребности в пентозах за счет других органов и (или) пищи. Отсюда, вряд ли правильно будет связывать с тиамином какие-то особые надежды в смысле эффективной реализации его кардиотропной активности в принятых условиях. Установлено, что при гипертрофии сердца без нарушения кровообращения всегда отмечается значительная гипертрофия коры надпочечников. Это может свидетельствовать о том, что в ответ на изменение работы сердца в стадии компенсаторной перестройки функции миокарда одной из приспособительных реакций является гиперактивация надпочечников [79].

В последней связи важно подчеркнуть, что компенсаторная гипертрофия сердца, т. е. активация синтеза сократительных белков в миокарде, имеет место на фоне гиперкортицизма. Хорошей иллюстрацией данного тезиса является повышение удельного содержания белка в сердце крыс в период весеннего всплеска стероидогенеза. Не исключено, что кортикостероиды способствуют притоку в сердце не только энергетических субстратов (за счет активации липолиза в жировой ткани и глюконеогенеза в печени), но также компонентов синтеза нуклеиновых кислот и белка (аминокислот, рибозо-5-фосфата и др.), освобождающихся при деструкции лимфоидной ткани. Известно, что энергия, необходимая для поддержания активированного протеиносинтеза в гипертрофирующемся сердце, освобождается при окислении различных субстратов [144]. Так, при гипертиреозе увеличение белковой массы сердца происходит на фоне преимущественной утилизации липидов [43], а в аварийную стадию компенсаторной гипертрофии при стенозе аорты миокард использует в основном продукты распада углеводов [96].

Кроме того, для этих целей в какой-то степени пригодны лактат, пируват и кетоновые тела [172]. Степень использования сердцем различных субстратов определяется, главным образом, их концентрацией в крови и уровнем оксигенации миокарда [287]. Благодаря высокой степени васкуляризации мышца сердца всегда снабжается кислородом адекватно ее работе [172]. При усилении сократительной функции сердечной мышцы кровоток в ее сосудах увеличивается в 4–5 раз [96, 172], в результате чего транспорт кислорода обычно перекрывает возросшие потребности в нем дыхательных систем миокарда. Об этом говорит снижение артериовенозной разности гипертрофирующегося миокарда по кислороду [96]. В случае выраженной гипертрофии сердце действует как «кислородная ловушка», способная захватывать до 27 % (!) всего потребляемого организмом кислорода [258]. Гарантированный функциональный аэробиоз сердечной мышцы позволяет ей утилизировать любые субстраты с максимальным энергетическим выходом. Поэтому переключение на преимущественное окисление того или иного субстрата, очевидно, не имеет принципиального значения для энергообеспечения пластики миокарда, при условии достаточного снабжения его кислородом. Отсюда ясно, что изменение субстратного профиля крови в результате витаминного (в том числе опосредованного гормонами) воздействия само по себе вряд ли способно как-то повлиять на пластику гипертрофирующегося сердца, которое в принятых условиях адекватно обеспечено энергией.

Для поддержания интенсифицированного протеино-синтеза здесь, по-видимому, более важен усиленный приток с кровью строительного материала – компонентов белкового и нуклеотидного обменов. Показано, что увеличение концентрации [ С]-аминокислот в среде инкубации значительно стимулирует включение метки в белки различных тканей [304].

Следовательно, для пластики миокарда будут иметь определенное значение все факторы, способствующие мобилизации тканевых аминокислот и нуклеотидных фрагментов. Не исключено, что в этом отношении позитивную роль могут играть, прежде всего, кортикостероиды. Давнее представление о катаболическом действии этих гормонов на мышечную ткань, базирующееся в основном на результатах исследования азотистого баланса организма, а также мочевой экскреции аминокислот и других продуктов белкового происхождения при гиперкортицизме, сейчас оспаривается многими авторами. Однако ни один из этих фактов, ни их совокупность не могут служить основанием для подобного утверждения, так как не исчерпывают сути вопроса и не исключают возможности выделения аминокислот из других тканей. Изотопными методами прямо показано, что глюкокортикоиды не влияют на скорость катаболизма мышечных белков и не высвобождают тканевые метаболиты из поперечнополосатой мускулатуры [110].

Таким образом, основным мобильным источником свободных аминокислот при гиперкортицизме остаются лимфоидная и соединительная ткани, подвергающиеся деструкции под влиянием гормонов коры надпочечников. Причем первая в этом случае может рассматриваться как главный поставщик не только предшественников биосинтеза белка, но и нуклеотидов, поскольку удаление селезенки резко снижает выделение с мочой метаболитов нуклеиновых кислот в ответ на нагрузку кортикостероидами [238]. Принципиальная возможность утилизации миокардом экстракардиальных компонентов белкового и нуклеинового обменов в условиях гиперкортицизма доказывается четкой временной корреляцией уменьшения содержания пуриновых нуклеотидов и кислоторастворимых соединений рибозы в селезенке с накоплением их в сердечной мышце после введения гидрокортизона [154]. По-видимому, сердечная мышца способна наилучшим образом использовать ситуацию гиперкортицизма, который имеет место в период резкого увеличения ее сократительной функции. Следовательно, можно думать, что все средства, снижающие стероидогенную реакцию в принятых условиях, будут в какой-то степени препятствовать компенсаторной перестройке структурной организации миокарда в ответ на увеличение объема его работы.

Все это в полной мере относится и к тиамину. В свете известных фактов о гипертрофии сердца у авитаминозных по витамину В1 животных [269] регуляторная роль тиамина в пластике миокарда представляется весьма проблематичной. Наиболее ярко взаимосвязь уровня физиологической функции миокарда с активностью протеино-синтеза в нем продемонстрирована опытами [286] с перфузией изолированных сердец морской свинки смесью аминокислот в условиях искусственной перегрузки левого желудочка (дозированное сужение аорты). Уже через 1 ч после начала перегрузки рибосомы, выделенные из мышцы левого желудочка, обладают резко увеличенной способностью включать в белок меченые аминокислоты (лизин, фенилаланин и лейцин) in vitro. Особая доказательность последних данных в смысле предметного «привязывания» регуляторных координат эффекта состоит в том, что они получены при моделировании процесса гипертрофии миокарда на изолированном сердечно-сосудистом препарате.

Интенсивность функционирования структур того или иного органа играет важную роль в регулировании новообразования белка его клетками. Считается, что количество выполняемой специализированной функции является одновременно детерминантой активности генетического аппарата и физиологической константой, сохраняющейся на постоянном уровне, благодаря своевременным изменениям работы белоксинтезирующей системы. Ф. Меерсон сформулировал представление о том, что взаимосвязь «ИФС активность генетического аппарата клетки» составляет основу механизма компенсаторной гипертрофии миокарда, где роль возбуждающего геном фактора отводится так называемым «метаболитам изнашивания»

функциональных структур, которые предположительно способны дерепрессировать соответствующие гены [96].

Таким образом, анализ вышеприведенного материала позволяет заключить, что сердечная мышца в условиях адекватного кислородного обеспечения сравнительно легко адаптируется к изменению объема ее специфической функции. Необычайно обширный диапазон приспособительных возможностей сердца к функциональным перегрузкам, очевидно, обеспечивается его удивительной способностью к утилизации любых энергетических субстратов [330].

Ввиду последнего обстоятельства попытки вмешаться в данный процесс с целью его коррекции (в частности, витаминами) выглядят недостаточно обоснованными. А если взять противоположную ситуацию, когда сердце или какая-то его часть находятся на голодном кислородном пайке – будет ли в этом случае применение тиамина или никотиновой кислоты целесообразным? Клиническим эквивалентом такого состояния являются разные формы ишемической болезни сердца.

Известно, что при ишемии сердца субстратная ориентация пораженной ткани изменяется. В эксперименте на собаках показано, что после перевязки малых ветвей основных стволов коронарных артерий потребление глюкозы в ишемизированных участках миокарда увеличивается по отношению к потреблению свободных жирных кислот, гликоген распадается, а лактат постепенно перестает утилизироваться [288].

Поскольку аэробные процессы полностью не блокировались (продолжалось окисление глюкозы и частичное окисление свободных жирных кислот), можно полагать, что при таком варианте воспроизведения ишемии в пораженном участке миокарда имела место не полная, а частичная гипоксия. Высокий уровень насыщения кислородом венозной крови, оттекающей от зоны ишемии, относительно удовлетворительный уровень напряжения кислорода в субэпикардиальных (но не субэндокардиальных) слоях также говорят за то, что непосредственные изменения метаболизма в области ишемии обусловлены именно гипо-, а не аноксией. При ужесточении ситуации (моделированием аноксии) в миокарде осуществляется полный переход от аэробного метаболизма с использованием глюкозы и жирных кислот в качестве энергетического материала к анаэробным процессам гликолиза [212]. В острый период инфаркта миокарда уровень свободных жирных кислот и глюкозы [200] в плазме резко возрастает. По идее, увеличение концентрации энергетических субстратов в крови, омывающей участки ишемированной ткани, должно способствовать выживанию клеток этой зоны. Однако у некоторых больных эта реакция обычно настолько выражена, что перестает быть оптимальной.

Гиперлипемия и гипергликемия при инфаркте миокарда являются следствием развития неспецифического адаптационного синдрома – стресса, протекающего на фоне выраженного инсулинового дефицита. Снижение секреции инсулина в остром периоде инфаркта миокарда было обнаружено с помощью нагрузок глюкозой и пробой с внутривенным введением толбутамида [335]. Степень инсулиновой недостаточности, выявляемая этими пробами, положительно коррелирует с тяжестью заболевания и наличием признаков кардиогенного шока [335]. Исходя из того, что при дефиците инсулина экстракция сердечной мышцей глюкозы из крови в целом снижена, можно легко допустить, что ишемизированные участки миокарда в этом случае испытывают существенный субстратный голод, так как в отличие от неповрежденных частей сердца не могут утилизировать в полной мере липиды. Отсюда понятно, почему в остром периоде инфаркта миокарда рекомендуют вводить инсулин вместе с глюкозой [116]. С этих же позиций удовлетворительное объяснение находят попытки использовать в указанных целях инсулиноподобное действие тиамина [162].

Поскольку потребление сердечной мышцей липидов является функцией их концентрации в крови [43], т. е. фактически не ограничено механизмами транспорта, а потребление глюкозы лимитируется напряженностью процесса ее трансмембранного переноса, становится очевидным, что in vivo скорее всего имеет место экспоненциальное соотношение между увеличением пропорции свободные жирные кислоты: глюкоза в плазме и поступлением первых в саркосомы.

Реципрокные взаимоотношения между утилизацией субстратов липидного и углеводного происхождения на уровне периферических тканей регламентируются идеей существования глюкозо-жирно-кислотного цикла, предложенной Рэндлом и др. [299]. В этом смысле сердце, очевидно, не является исключением, так как имеются данные, что свободные жирные кислоты подавляют гликолиз и окисление глюкозы в миокарде [299]. У собак при распространенной ишемии миокарда, несмотря на снижение коронарного кровотока, наблюдается пропорционально большее поглощение свободных жирных кислот по сравнению с поглощением глюкозы и пирувата и потреблением миокардом кислорода [301].

Совершенно очевидно, что в принятых условиях свободные жирные кислоты будут скорее накапливаться, чем окисляться. Жировая инфильтрация ишемизированного и инфарктного миокарда уже давно описана [116], а в настоящее время экспериментально доказано, что между степенью повышения концентрации свободных жирных кислот в артериальной крови и накоплением триглицеридов в гипоксическом миокарде существует прямая зависимость.

Считается, что депонирующиеся жирные кислоты отрицательно влияют на ишемизированную сердечную мышцу, снижают ее тонус, уменьшают коронарный кровоток [116], ухудшают окислительный метаболизм в митохондриях [96], нарушают сократительную функцию миокарда [188] и т. д. Характерно, что кардиотропные эффекты глюкозы при ишемии сердца, как правило, имеют противоположное направление.

Глюкоза улучшает питание миокарда, предотвращает потерю калия ишемизированными тканями и уменьшает возможность развития аритмии, может поддерживать потенциал действия и т. д. [116]. Имеются данные, что после нагрузки глюкозой уровень свободных жирных кислот в крови больных острым инфарктом миокарда снижается, а функция сердца улучшается [282]. Если реципрокные взаимоотношения между субстратами липидного и углеводного происхождения в сердце действительно могут регулироваться их концентрацией в крови [116], то легко допустить, что все факторы, способствующие утилизации глюкозы, должны иметь благоприятный эффект [98], а все факторы, увеличивающие потребление свободных жирных кислот, будут оказывать повреждающее действие на ишемизированный миокард. В соответствии с этими рассуждениями терапевтическая эффективность лечебных мероприятий (в частности, при инфаркте миокарда) зависит, прежде всего, от того, как они влияют на субстратный профиль крови. С учетом этого обстоятельства применение тиамина, снижающего уровень гликемии и повышающего плазматическую концентрацию свободных жирных кислот [85], в принятых условиях метаболически вряд ли оправдано.

Таким образом, несмотря на более чем 100-летний опыт использования тиамина в кардиологии, до сих пор нет удовлетворительного объяснения его несомненной терапевтической эффективности. Совершенно очевидно, что ввиду несостоятельности специфической (коферментной) или общеметаболической аргументации стратегия витаминокоррекции сердечно-сосудистой патологии должна строиться на патогенетической основе конкретных заболеваний.

Считается, что стресс, ишемия и сочетание этих факторов играют главную роль в возникновении основных заболеваний сердца [98]. Поэтому понятно, что программа борьбы с заболеваниями сердечно-сосудистой системы предусматривает развитие исследований, направленных на изучение патогенеза и обоснование принципов профилактики стрессорных и ишемических повреждений сердца. Стресс-реакция не просто предшествует ишемическому повреждению сердца, но и предопределяет его развитие, а боль и страх смерти, которые сопровождают приступы стенокардии, могут не только потенцировать дальнейшее прогрессирование ишемии за счет чрезмерного усиления и своеобразной «фиксации» нормального адренергического эффекта, но и стать причиной некоронарогенного адренергического повреждения неишемизированных отделов миокарда. Экспериментально установлено, что катехоламины вызывают сокращение круговых гладких мышц коронарных артерий, опосредованное через альфа-адренорецепторы. Чрезмерно длительное и значительное сужение артерий, первоначально являющееся причиной перераспределения крови, перерастает в контрактурный спазм, который может стать основой некроза миокарда. Обусловленная избытком катехоламинов активация липаз, фосфoлипаз, перекисного окисления липидов, достигая чрезмерного уровня, приводит уже не к интенсификации обновления и физиологически выгодным изменениям состава липидного бислоя мембран, а к его повреждению и, как следствие, нарушению функционирования липидзависимых ферментов, рецепторов и каналов ионной проницаемости. Активация гликолиза, которая может повысить резистентность органов и тканей к гипоксии при действии высоких концентраций катехоламинов, приводит к уменьшению резерва гликогена и снижению резистентности органов к гипоксии. Это значит, что при затянувшемся во времени стрессе адаптивные адренергические сдвиги превращаются в повреждение путем перехода количества в качество [98].

Детальное изучение адренергического механизма в развитии стрессорных кардиопатий фактически оставило вне поля зрения исследователей не менее важную этиологическую и патогенетическую роль коры надпочечников. Были подробно рассмотрены модуляторные системы организма, которые в естественных условиях блокируют определенные звенья патогенетической цепи адренергических повреждений сердца и ограничивают сами повреждения. Это дало возможность сформулировать принцип «подражания» этим модуляторным системам и показать, что на практике использование метаболитов этих систем и их химических аналогов во многих случаях обеспечивает эффективную защиту сердца от стрессорных и ишемических повреждений. Громадным творческим наследием школы Ф. Меерсона убедительно показано, что поиск средств профилактики и коррекции тяжелых кардиологических осложнений стресса «внутри» организма вполне оправдан. Следовательно, логично пытаться найти их и «снаружи», т. е. в окружающей среде среди незаменимых факторов питания организма.

В этой связи перспективным представляется исследование кардиотропности витамина В 1, являющегося антистрессором, который способен снижать актуальность стрессорного воздействия через активацию стресслимитирующих систем [13]. Соответственно тиамин целесообразно использовать при хроническом стрессе, когда накапливающиеся относительно стойкие повреждения от одного стрессорного эпизода к другому могут играть роль в постепенном развитии первичного некоронарогенного кардиосклероза и хронической сердечной недостаточности, которые составляют важный механизм изнашивания сердца.

Аскорбиновая кислота. Уже в процессе выполнения работы, когда обнаружилось защитное антиишемическое действие витамина В1 при остром раздражении (эмоционально-болевой стресс) и появилась необходимость исследовать его собственную вазодилятаторную активность, последняя неожиданно проявилась у еще одного витамина – аскорбиновой кислоты, что предопределило включение ее в перечень исследуемых потенциальных кардиопротекторов. Поэтому следует рассмотреть еще один вид стресса – окислительный и связанные с ним NO-зависимые механизмы вазоконстрикции и вазодилятации.

«Окислительным стрессом» Г. Зисс называет повреждение биологически важных молекул (нуклеиновые кислоты, белки, липиды, углеводы) реактивными формами кислорода [315]. Витамин С считается главным антиоксидантом межклеточных жидкостей в организме, а также важным фактором внутриклеточной антиоксидантной защиты. Благодаря сильно выраженным восстановительным свойствам аскорбиновая кислота может легко взаимодействовать с О 2, Н2О2, ОН, НОСl, перекисными соединениями и синглетным кислородом, защищая компоненты вне– и внутриклеточной среды организма от окислительных повреждений.

Супероксидрадикал – это важнейший индуктор перекисного окисления липидов, резкая активация которого, а также фосфолипаз, плюс детергентное действие жирных кислот лизофосфатидов (липидная триада) являются основным патогенетическим механизмом повреждения кардиомиоцитов при стрессе [98].

Продукты взаимодействия О 2 с белками, лейкотриены и другие обладают свойствами лейкотаксинов, стимулирующих миграцию лейкоцитов в зону ишемии. Уже через 1 ч после окклюзии коронарной артерии наблюдается адгезия нейтрофилов к эндотелию сосудов ишемизированной зоны. С началом реперфузии лейкоциты легко проникают в ткань миокарда, во множестве скапливаясь вокруг поврежденных клеток [277]. В активированных лейкоцитах резко повышается количество молекул индуцибельной синтетазы окиси азота за счет экспрессии соответствующего гена и начинается обвальный синтез больших (наномолярных) концентраций окиси азота из аргинина [274]. Поскольку активированные полиморфноядерные лейкоциты и макрофаги сами продуцируют значительные количества супероксиданиона, NO и О2 реагируют между собой с образованием еще более агрессивных

- радикалов ОNOO и OH, являющихся сильнейшими окислителями, которые определяют их валовый цитотоксический эффект [222].

Вновь образованный пероксинитрит (ОNOO ) подвергается протонированию (ONOOH) и через свои кислотные формы творит много вреда в клетке-мишени, нитрируя или окисляя ее биологически важные структуры. Единственной защитой клеток от агрессии является наличие в них достаточного количества быстрореагирующих SH-групп, которые способны нейтрализовать пероксинитрит через образование метаболически инертных S-нитрозотиолов. В случае дефицита тиолов пероксинитрит наносит удар и разрушает ткани, как это происходит при инфаркте миокарда, отеке легких или инсульте мозга [49].

Инфильтрация ишемизированного миокарда лейкоцитами и сопутствующая этому процессу лейкоцитарная деструкция поврежденных ишемией клеток миокарда, опосредованная супероксиданионом и пероксинитритом, способствует интенсификации ПОЛ.

Важная роль свободнорадикальных процессов в развитии стрессорных кардиопатий уже сама по себе предопределяет наличие мощного кардиопротекторного потенциала у природных антиоксидантов [46].

Известно, что кардиотоксический эффект катехоламинов сопряжен с развитием окислительного стресса, когда чрезмерная генерация активных форм кислорода превышает физиологические возможности систем антиоксидантной защиты. Образование супероксиданиона имеет место при распаде (аутоокислении) самих катехоламинов в сердце, при активации ими цАМФ-зависимого свободнорадикального окисления 2+ в митохондриях или Са -зависимой трансформации ксантиндегидрогеназы в ксантиноксидазу [193].

Исходя из идеологии окислительного стресса, т. е.

отталкиваясь от очевидной необходимости нейтрализации активных форм кислорода, применение витамина С для коррекции и профилактики адренергических повреждений миокарда обосновано патогенетически. Но в связи с NO можно предполагать и другие возможности реализации кардиотропной активности аскорбиновой кислоты, обусловленные тем, что окись азота выступает в качестве активного компонента эндотелиального фактора релаксации сосудов, образующегося в эндотелиальных клетках сосудов и вызывающего их расслабление [196, 274].

В системе кровообращения непрерывное образование физиологических (пикомолярных) концентраций NO конституитивной нитрогеноксидсинтетазой в сосудистом эндотелии поддерживает тканевую перфузию на соответствующем уровне и регулирует артериальное давление крови [175]. NO легко диффундирует в соседние гладкомышечные клетки, где связывается с железопорфиринами, т. е. с простетической группой (гем или железосерные кластеры) соответствующих ферментов, вызывая их активацию или ингибирование [341]. При этом акцепция NO гемовой частью гуанилатциклазы ведет к стимуляции синтеза цГМФ – медиатора вазодилятации [230].

Источником NO в организме могут быть и нитратсодержащие лекарства. Органические нитраты (нитроглицерин, изосорбиддинитрат и его однонитратный метаболит – изосорбид-5-мононитрат) вызывают диастолу гладких мышц [336]. В малых дозах, главным образом, они являются фактором, расширяющим вены, а в больших — расширяют как вены, так и артерии [93]. Механизм действия нитратов, инициирующий релаксацию гладких мышц, известен и связан с выделением окиси азота. Так, нитроглицерин и другие органические нитраты превращаются в неорганические нитраты и окись азота под влиянием восстановителей, например сульфгидрильных групп цистеина [215]. Среди витаминов сильным восстановителем является аскорбиновая кислота, поэтому было интересно использовать ее для потенцирования антиангинального действия NO-доноров.

2. Кардиопротекторные эффекты тиамина в эксперименте

2.1. Стрессорные кардиопатии Стрессорная альтерация миокарда – причина гибели животных при иммобилизационном стрессе по Г. Селье. При моделировании иммобилизационного стресса одни авторы относят фатальный исход экспериментов за счет гиперпродукции стрессреализующих гормонов (катехоламины, кортикостероиды) [141], другие – стресслимитирующих (инсулин) [121].

В наших опытах отмечалась гибель 56 % крыс к 72 ч иммобилизации [27, 30], что не расходится с данными литературы. Практически в 100 % случаев наиболее вероятной причиной гибели животных при иммобилизационном стрессе является постепенно нарастающая стрессорная альтерация сердечной мышцы, приводящая к ее функциональной несостоятельности и развитию недостаточности кровообращения.

Об этом свидетельствуют морфологические, а также биохимические признаки (нарушение окислительного фосфорилирования, активация ПОЛ, повышение текучести митохондриальных и микросомальных мембран кардиомиоцитов).

Тиамин, оптимизируя стресс-реакцию организма на действие неспецифических раздражителей, предотвращает гибель животных при иммобилизационном стрессе.

Из рис. I-1 видно, что у контрольных животных в стадии тревоги иммобилизационного стресса (1— 12 ч) наблюдается резкий подъем содержания 11-ОКС в крови, который сохраняется на высоком уровне в течение 24 ч нервно-мышечного раздражения с последующим снижением в конце периода резистентности.

В фазе истощения (48–72 ч) наблюдается новая волна стероидогенеза.

Рис. I-1. Стероидогенная реакция надпочечников в динамике хронического стресса до (черные столбики) и после (серые столбики) введения тиамина. Контроль – белые столбики. По оси абсцисс – срок наблюдения; по оси ординат – содержание 11-ОКС в крови, мкМ/л.

* Достоверные изменения – p 0,05 Рис. I-2 демонстрирует динамику уровня ИРИ в крови тех же животных: существенный спад содержания гормона спустя 1 ч иммобилизации (стадия тревоги), затем стабилизация его на относительно низком уровне между 12–24 ч опыта с заметным уменьшением в конце стадии резистентности (24–48 ч) и резкий подъем к 72 ч (стадия истощения).

Длительность стадий иммобилизационного стресса определена в соответствии с данными [140]. Фазовая градация стресса традиционно приводится в терминах Г. Селье, хотя об истощении надпочечников при активации гормоносинтеза в корковом слое адреналовых желез при отсутствии тотальной деструкции кортикоцитов [16] в терминальную стадию раздражения говорить не приходится. Динамика 11-ОКС в течение 72 ч иммобилизационного стресса подтверждается результатами аналогичного эксперимента, проведенного ранее [6], а динамика ИРИ при хроническом истощающем раздражении – данными [121].

Если абстрагироваться от уровня нормы (интактные животные) и за точку отсчета взять стадию резистентности, то можно заметить, что начиная с 24 ч опыта содержание обоих гормонов в крови крыс изменяется однонаправленно. Это указывает на подчиненность инсулинового ритма кортикостероидному и находится в соответствии с известными данными о том, что гормоны коры надпочечников способны лимитировать инсулиногенез [13]. Реципрокное соотношение 11-ОКС и ИРИ в стадии тревоги (1—12 ч) свидетельствует о том, что инсулинотропное влияние кортикостероидов в первую и большую часть второй фазы иммобилизационного стресса, очевидно, нивелируется катехоламинами, которые подавляют секрецию инсулина, связываясь с -рецепторами -клеток поджелудочной железы [58]. Таким образом, не исключено, что при длительной иммобилизации животных динамика ИРИ в крови de facto определяется динамикой стресс-гормонов.

Рис. I-2. Содержание ИРИ (пкМ/л) в крови крыс в динамике хронического стресса до (черные столбики) и после (серые столбики) введения тиамина. Контроль

– белые столбики. По оси абсцисс – срок наблюдения, по оси ординат – единицы измерения. * Достоверные изменения – p 0,05 По мнению Л. Панина, при хроническом истощающем стрессе в фазу резистентности «продукция катехоламинов и глюкокортикоидов стремится к максимуму, а продукция инсулина к минимуму. Организм работает на пределе своих адаптационных возможностей и быстро переходит в стадию истощения, где происходит срыв регуляторных механизмов, в результате чего продукция инсулина может резко возрастать, развивается сильнейшая гипогликемия и организм погибает» [121].

Однако К. Судаков [153] считает, что в принятых условиях гибнут, прежде всего, стрессчувствительные животные от стрессорных кардиопатий – острой сердечной недостаточности или инфаркта миокарда.

Так, в его опытах из 40 изученных беспородных крыс устойчивыми к иммобилизационному эмоциональному стрессу оказались 26, из них у 6 вообще не обнаружили изменений артериального давления, у 12 наблюдалось первичное его повышение с последующей стабилизацией. 14 крыс этой группы оказались предрасположенными к эмоциональному стрессу и погибли, проявляя различную динамику изменений артериального давления. У них при вскрытии были обнаружены массивные участки инфаркта миокарда [153].

Согласно Г. Селье, при длительной иммобилизации у животных нарушается Na /K баланс в организме (развивается гипокалиемия), что предрасполагает к возникновению под влиянием продолжающейся стрессорной нагрузки неинфарктных некрозов сердечной мышцы, подобных тем, которые вызываются глюкокортикостероидами на фоне десенсибилизации с помощью ортофосфата натрия [141].

Следовательно, сегодня фактически существуют 3 гипотетических сценария гибели животных в терминальной фазе истощающего стресса: 1) срыв адаптации из-за функционального истощения надпочечников [140]; 2) фатальная гипогликемия, обусловленная нарушением (разбалансировкой) гуморальной регуляции, приводящей к гиперпродукции инсулина [121] и 3) несовместимые с жизнью стрессорные кардиопатии, обусловленные гиперактивностью симпато-адреналовой системы [153].

Первое допущение проверяли исследованием морфофункционального состояния кортикоцитов в течение всего периода иммобилизации животных, второе

– измерением уровня глюкозы и ИРИ в крови крыс, а третье – электронномикроскопическим изучением альтерации кардиомиоцитов при непрерывном хроническом раздражении и применением тиамина, способного снижать продукцию кортикостероидов и катехоламинов при стрессе [17] и в силу этого являющегося потенциальным кардиопротектором. В последнем случае предполагалось, что если стрессорные кардиопатии на самом деле являются причиной гибели животных, то тиамин, как и любой антистрессор, должен увеличивать процент их выживания.

Результаты проверки показали, что на самом деле 3-суточная иммобилизация для значительной части животных (56 %) заканчивается фатально [16, 17, 27, 30]. При этом уровень 11-ОКС в строгом соответствии со сменой фаз ИС изменяется синусоидально: подъем – плато – снижение, т. е. до 48 ч опыта (начало фазы истощения) все происходит так, как предсказывает традиционная схема ОАС. А вот далее наблюдающийся подъем уровня 11-ОКС в предагональном состоянии (72 ч) ей явно противоречит.

Проведенные параллельно электронномикроскопические исследования ультраструктуры кортикоцитов позволяют понять, за счет чего это происходит.

Действительно, как и предполагал Г. Селье, в фазу истощения в коре НП увеличивается количество изношенных секреторных клеток. На электронограммах видно, что в кортикоцитах, прилегающих к запустевшим, спавшимся или забитым продуктами микроклазматоза капиллярам, начинается краевая деструкция внутриклеточных структур, ответственных за различные этапы стероидогенеза: митохондрии разрушаются (рис. I-3), эндоплазматический ретикулум исчезает, цитозоль гомогенизируется (рис. I-4); хотя в дистальных отделах клетки органеллы еще сохраняют интактную ультраструктуру.

Наконец процесс дезинтеграции захватывает нуклеоплазму, ядерный хроматин фрагментируется, происходит кариорексис ядра (рис. I-5) и клетка перестает существовать как самостоятельная функциональная единица. Однако валовый рост деструкции клеточных элементов коры НП в терминальной стадии ИС (72 ч) не превышает 10 %, остальные 90 % кортикоцитов имеют совершенно нормальный вид.

Рис. I-3. Деструкция митохондрий кортикоцитов при 72-часовом иммобилизационном стрессе. 71 000 Рис. I-4. Дезорганизация цитозоля кортикоцитов при 72-часовом иммобилизационном стрессе. 71 Более того, к началу фазы истощения (48 ч) в клеточном спектре пучково-сетчатой зоны коры НП (рис.

I-6) преобладают темные и очень темные кортикоциты с мощным регенераторным потенциалом, создающим громадный и легко мобилизуемый функциональный резерв стероидогенеза. К концу фазы истощения (72 ч) их количество несколько снижается за счет последовательной трансформации очень темных клеток в темные, затем в полутемные и наконец в секретирующие светлые клетки, которые и обеспечивают искомый прирост 11-ОКС в терминальной фазе стресса (рис. I-6).

Следовательно, ни о каком функциональном истощении НП здесь речь идти не может, так же как и том, что этот феномен может быть причиной гибели животных при ИС.

Рис. I-5. Кариорексис ядер кортикоцитов при 72часовом иммобилизационном стрессе: выход гетерохроматина. 71 000 Рис.

I-6. Клеточный спектр пучковой зоны коры надпочечника крысы при 72-часовом стрессе: очень темные и просветленные кортикоциты. 71 000 То же относится и к стресслимитирующей системе, роль которой в принятых условиях выполняет инсулин. В аварийную фазу ИС уже в первые часы уровень ИРИ в крови резко падает (рис. I-2) в результате прекращения инсулиногенеза при блокаде -рецепторов -клеток поджелудочной железы катехоламинами [58]. Развивается так называемый «транзиторный диабет напряжения», который в фазу резистентности (24 ч) плавно переходит в типичный стероидный диабет благодаря перераздражению инсулоцитов повышенным уровнем 11-ОКС, что не исключает развитие вторичной инсулярной недостаточности, т. е. истощение гормонобразовательной функции островкового аппарата к 48 ч опыта. Однако никакого истощения здесь тоже нет, поскольку в предагональном состоянии животных (72 ч) наблюдается достоверное повышение уровня ИРИ в крови. Такой всплеск инсулиногенеза Л. Панин считает результатом разбалансировки в системе гормональной регуляции гомеостаза, которая имеет фатальные последствия из-за развивающейся инсулиновой гипогликемии [121]. Измерение уровня глюкозы в крови с помощью ферментных электродов показало, что рост инсулинемии в терминальной стадии ИС (72 ч) сопровождается не гипо-, а гипергликемией. Несмотря на резкое повышение инсулинемии в фазу истощения (от 48 до 72 ч опыта – рост в 4 раза), содержание глюкозы в крови крыс в этот период достоверно не снижается (опыт 48 ч – 6,2 мМ/ л (р0,05); опыт 72 ч – 7,1 мМ/л (р0,05); контроль – 8,1 мМ/л). Аналогичные данные были получены в эксперименте на крысах с применением летальной дозы ионизирующей радиации [123], где в предагональном состоянии (72 ч опыта) при всплеске инсулинопродукции (увеличение в 3–5 раз) содержание сахара в крови существенно возрастало (более чем в 1,5 раза) по сравнению с начальным периодом развития лучевой болезни (6 ч опыта) и в 1,3 раза по отношению к предыдущему сроку наблюдения (48 ч опыта). Следовательно, гибель половины животных к 72-му часу иммобилизации происходит не от гиперинсулинемии и сопутствующей гипогликемии, а от каких-то других причин.

Что касается гиперсекреции инсулина в терминальную фазу раздражения (рис. I-2), то скорее всего – это не разбалансировка в системе гуморальной регуляции гомеостаза [121], а признак начала функционирования инсулярного аппарата поджелудочной железы, освобождающейся к этому времени от катехоламинового блока. Восстановление же эндогенного (физиологического) механизма инсулиногенеза не может приводить к фатальной гипогликемии в принципе.

Факт нормализации биологического ритма секреции инсулина в принятых условиях документируется тиаминовыми эффектами. В частности, на фоне введения тиамина уровень ИРИ в крови животных при иммобилизационном стрессе обнаруживает четкий 48часовый ритм (рис. I-2), что соответствует данным литературы о 2-суточных осцилляциях содержания глюкозы в крови интактных крыс [117].

Экстраполируя эти результаты на динамику 11ОКС, можно заметить, что кривая 1 (стресс) на рис.

I-1 фактически демонстрирует развитие стероидогенной реакции на фоне «выключенного» инсулиногенеза (катехоламиновый блок -клеток поджелудочной железы), а кривая 2 (стресс + тиамин) – ту же реакцию, но на фоне активированного гормоносинтеза в инсулоцитах. Как видно, разница существенная и по амплитуде стероидогенной реакции (снижение), и по ее шагу (сдвиг влево).

Тиамин, активируя инсулинсинтетическую функцию поджелудочной железы [13], обеспечивает более раннее выхождение пика ИРИ в крови крыс при истощающем стрессе – сдвиг влево по временной шкале опыта с 72 ч на 48 ч иммобилизации (рис. I-2).

Синхронизация, т. е. удовлетворительное совпадение кривых 2 (стресс + тиамин) на рис. I-1 и I-2, свидетельствует о том, что при активированном инсулиногенезе стрессорный ритм 11-ОКС лимитируется уровнем ИРИ в крови крыс. Одновременно это означает, что антистрессорное действие тиамина, очевидно, опосредовано инсулином, который способен тормозить образование гормонов как в мозговом [355], так и корковом слое [177] надпочечников. Этим же объясняется и факт отсутствия гибели животных, получавших тиамин, при 3-суточной экспозиции иммобилизационного стресса, поскольку инсулин является мощным кардиопротектором [116]. Комбинацию инсулина с глюкозой давно используют в клинике для реабилитации больных с ишемическими повреждениями миокарда [82].

Таким образом, есть веские основания считать, что роль «киллеров» при истощающем стрессе выполняют стресс-гормоны (катехоламины и кортикостероиды), длительная гиперпродукция которых закономерно приводит к функциональной несостоятельности основной системы жизнеобеспечения – сердечно-сосудистой. Инсулину же здесь явно принадлежит хелперная функция поддержания жизнедеятельности. Данная констатация диктует стратегию выживания – применение антистрессорных средств, в том числе тиамина, оптимизирующего процессы гормоносинтеза в кортикальной и хромаффинной тканях надпочечников через механизм их инсулинового контроля.

Ультраструктура кардиомиоцитов. Поскольку при гистологическом исследовании сердец погибших животных, инфарктов или внеинфарктных некрозов миокарда не удалось обнаружить, основное внимание было уделено клеточному составу, морфологическим критериям нативности митохондриального и сократительного аппарата кардиомиоцитов, состоянию их саркоплазматического ретикулума, а также изменениям капиллярного русла во всех фазах развития стрессорной реакции, так как любые изменения функции сопровождаются морфологическими сдвигами [137].

В каждом случае оценивали ультраструктуру преобладающего типа клеток.

Контроль. Электронномикроскопически у интактных крыс в левом желудочке сердца выявляются кардиомиоциты двух типов: разносокращенные электронопрозрачные и равноплотные во всех частях светлые клетки (30 %) и релаксирующие полутемные клетки (70 %) с инвагинированным гиперхромным ядром, содержащим многочисленные впячивания нуклеолеммы и подстилающей широкой полосы маргинального гетерохроматина, слабоосмиофильными саркорплазмой, контрактильным аппаратом и очень темными митохондриями. Первые, которые находятся в явном меньшинстве, очевидно, осуществляют сократительную функцию миокарда в период относительного покоя, а вторые служат их функциональным резервом, легко мобилизуемым при рабочих нагрузках. По сравнению со светлыми клетками количество митохондрий в полутемных кардиомиоцитах заметно больше, а их площадь меньше. Мембраны всех органелл и их кристы практически не деструктированы, митохондриальный матрикс мелкозернист, одинаково темен и плотен. Все это свидетельствует о том, что энергообразовательный аппарат резервных клеток находится в спокойном состоянии и не участвует в сократительном акте (рис. I-7).

Митохондрии располагаются между миофибриллами в виде цепочек, иногда они образуют небольшие скопления. Большинство митохондрий имеют овальную, угловатую или вытянутую форму, двухконтурную наружную мембрану и значительное количество параллельно расположенных крист, пересекающих органеллы в поперечном направлении. Миофибриллы в полутемных клетках имеют типичное строение. На продольном срезе в них отчетливо дифференцируются диски А, I, полоса Н, мезофрагма М, иногда полосы N. Латентное состояние сократительного аппарата документируют отсутствие полос сокращения и одинаковая длина контрактильных элементов.

Границы саркомеров, ограниченные дисками Z, соседних миофибрилл совпадают друг с другом, сообщая кардиомиоцитам равномерную параллельную исчерченность. Канальцы Т-системы и гладкого саркоплазматического ретикулума без особенностей.

Просвет капилляров расширен. Почти всегда в нем обнаруживаются эритроциты. Одни капилляры близко примыкают к кардиомиоцитам, другие отделены от них широким перикапиллярным пространством, которое плавно переходит в межклеточную щель. Эндотелий истончен, темен, содержит пиноцитозные пузырьки. Сморщенные гиперхромные ядра эндотелиальных клеток, отграниченные тонким ободком цитоплазмы и клеточной мембраной, выступают в просвет капилляра.

Фаза напряжения (1—12 ч опыта). В аварийную стадию иммобилизационного стресса в клеточном спектре левого желудочка преобладают светлые кардиомиоциты (80 %), резко снижается количество полутемных (18 %) и появляются единичные темные клетки (2 %).

Незначительная часть светлых кардиомиоцитов левого желудочка в эту фазу обнаруживает явную тенденцию к равномерному потемнению (переходные клетки), т. е. имеет признаки пересокращения, крайней формой которого является образование темных клеток. Большинство же светлых клеток находятся в состоянии умеренного сокращения или даже релаксации (рис. I-8). Все они имеют ядра вытянутой или округлой формы с уменьшенным количеством хроматина и просветленной нуклеоплазмой. Маргинация хроматина не выражена. Сохраняется двухконтурность ядерной мембраны. Канальцы Т-системы и саркоплазматического ретикулума несколько расширены.

Рис. I-7. Миокард левого желудочка интактной крысы. Полутемные кардиомиоциты. 71 000 Рис. I-8. Миокард левого желудочка крысы при иммобилизационном стрессе. Фаза напряжения (1 ч опыта). Светлые кардиомиоциты. 71 000 Миофибриллы слегка отечны, местами волокнисты. Диски Z хорошо видны. Вставочные диски утолщены, имеют расширенные щели, границы их несколько расплывчаты. Между миофибриллами расположены двухконтурные митохондрии, имеющие овальную или вытянутую форму. Наблюдается повсеместное набухание органелл и самих клеток. Электронная плотность митохондрий, саркоплазмы, нуклеоплазмы и миофибрилл кардиомиоцитов выравнивается. В светлых клетках по сравнению со всеми остальными количество митохондрий найменьшее, площадь их – найбольшая, кристы сильно деструктированы, матрикс просветлен, пятнисто вымыт или вакуолизирован. Все эти особенности позволяют оценить наблюдаемую картину как отражающую состояние гиперфункции митохондриального аппарата.

Просвет большинства капилляров сужен как за счет набухания собственного эндотелия, так и сдавливания их тесно прилегающими гипертрофированными кардиомиоцитами. Перикапиллярные пространства и межклеточные щели как самостоятельные объемные образования между светлыми клетками не выявляются.

Фаза резистентности (24 ч опыта). В эту стадию развития стрессорной реакции кардиомиоциты в левом желудочке примерно поровну (по 40 %) представлены двумя типами клеток: переходными и светлыми. Причем первые от вторых отличаются меньшим отеком саркоплазмы и снижением степени набухания митохондрий, т. е. уплотнением их матрикса (рис. I-9, I-10). Количество митохондрий значительно превышает их число не только в светлых, но и в полутемных клетках. Встречаются очень большие скопления митохондрий. Большинство органелл имеют округлую форму и сохраняют наружную мембрану, двухконтурность которой в некоторых участках теряется. Матрикс митохондрий плотный, мелкогранулярный, в местах отсутствия крист гомогенизирован. Гомогенизация матрикса в различных органеллах колеблется от незначительных участков до всей митохондрии. Кристы несколько извилисты, но, как правило, они сохраняют параллельность и пересекают органеллы, соединяясь с наружной мембраной противоположных сторон. Почти во всех митохондриях часть крист разрушена и эти участки гомогенизированы.

В переходных клетках активируется процесс репродукции митохондрий. Он осуществляется путем деления и почкования органелл. О том, что митохондрии делятся, не сливаются, свидетельствует факт точного пространственного совпадения противолежащих крист соседних органелл. При почковании возникают перетяжки, истончение которых приводит к слиянию наружных мембран, а последующий их разрыв – к появлению дочерних митохондрий. Миофибриллы находятся в состоянии умеренного сокращения без очагов дезорганизации миофиламентов. В миофибриллах нередко увеличен диск I. Извитость вставочных дисков заметно увеличивается. Ядра кардиомиоцитов округлые, содержат повышенное количество хроматина, который концентрируется под нуклеонемой.

Рис. I-9. Миокард левого желудочка крысы при иммобилизационном стрессе. Фаза резистентности (24 ч опыта). Слабо сокращенные переходные кардиомиоциты. 71 000 Рис.

I-10. То же, что и на рис. I-9. Фаза резистентности (24 ч опыта). Сильно сокращенные переходные кардиомиоциты. 71 000 Капилляры отделены от сарколеммы кардиомиоцитов широкими прекапиллярными пространствами, переходящими в межклеточные щели различной ширины. Просветы большинства капилляров резко расширены и, как правило, заполнены свободно циркулирующими эритроцитами. Эндотелий капилляров уплощен, клетки – умеренной электронной плотности.

Пиноцитоз выражен незначительно. Ядра овальной формы, нуклео-плазма просветлена в центре.

Судя по всему, переходные клетки – это интенсивно работающие кардиомиоциты, которые вместе со светлыми обеспечивают сократительную функцию сердца в фазу резистентности иммобилизационного стресса. Одновременно они накапливают регенераторный потенциал (деление митохондрий) и обнаруживают признаки перехода в другое функциональное состояние (обезвоживание и равномерное увеличение электронной плотности цитоструктур), т. е. трансформации в темные клетки (20 %). На рис. I-9, I-10 отчетливо видна динамика этого процесса. Степень обезвоживания клеток можно оценить по изменению сарколеммы, которая вначале имеет ровный пузыревидный контур, отграничивающий разбухшие кардиомиоциты, а в конце процесса по мере сокращения отечности саркоплазмы и выпячивания в межклеточные щели конгломератов митохондрий сарколемма принимает вид аркад, дублирующих контуры прилегающих органелл.

Конец фазы резистентности – начало фазы истощения (48 ч опыта). Морфологически (по клеточному составу и состоянию сосудистого русла) начало и конец фазы истощения четко различаются. К 48 ч опыта в клеточном спектре левого желудочка сердца явно преобладают темные кардиомиоциты, а к 72 ч

– светлые, с множественными явлениями деструкции митохондриального и сократительного аппарата.

Темные клетки (рис. I-11), по сути, это пересокращенные переходные, которые характеризуются максимальной осмиофилией всех субклеточных образований. Сарколемма в темных клетках образует крутые аркады, в которых располагаются митохондрии, а саркоплазма практически не выявляется. В тех участках, где митохондрии прилежат к сарколемме, последняя теряет двухконтурность. Повышенная электронная плотность темных миокардиальных клеток зависит как от структуры органелл, так и от топографии последних.

Темные кардиомиоциты содержат компактные гиперхромные ядра с преобладанием конденсированного хроматина, часто имеющие изрезанные контуры. Количество митохондрий в них значительно больше, чем в светлых клетках, и они располагаются не параллельными с миофибриллами рядами, а в виде скоплений в различных участках клетки. Между миофибриллами можно видеть крупные митохондриальные агломераты, занимающие нередко все поле зрения. Причем органеллы здесь настолько тесно расположены, что другие структуры клетки почти незаметны (рис. I-11). Большое количество митохондрий располагается также в околоядерной зоне, под сарколеммой вблизи капилляров, у межклеточных щелей. Большинство митохондрий находится в конденсированном состоянии, матрикс их плотный, нередко частично гомогенизирован. Разные органеллы содержат различное количество крист. Многие митохондрии увеличены в размерах, но это увеличение не имеет характера набухания: матрикс таких органелл не просветлен, межкристные пространства не расширены, а кристы не только не деформированы и не разрушены, а напротив, их становится больше и они как бы более плотно упакованы в теле митохондрии.

Во многих миофибриллах наблюдаются полосы пересокращения и различной величины участки гомогенизации миофиламентов. В субсарколемной зоне иногда возникают небольшие участки расплавления миофибрилл.

Увеличение количества темных клеток в миокарде при 48-часовой нагрузке растяжением животных можно рассматривать как одну из компенсаторных реакций сердца в ответ на повреждающий фактор. Появление в этих условиях темных кардиомиоцитов с резко увеличенным числом митохондрий подтверждает известную точку зрения на темные клетки как источники материальных и энергетических ресурсов, которые возникают в связи с напряженной попеременной деятельностью сократительных элементов и активацией в них процессов внутриклеточной регенерации [137].

Другой важной особенностью, характеризущей данный период стресса, является повышение гетерогенности клеточного пула левого желудочка.

Рис. I-11. Миокард левого желудочка крысы при иммобилизационном стрессе. Конец фазы резистентности – начало фазы истощения (48 ч опыта). Темные кардиомиоциты. 71 000 Если в фазу напряжения иммобилизационного стресса практически не выявлялись переходные и темные клетки, в фазу резистентности – полутемные, то к началу фазы истощения клеточный спектр кардиомиоцитов представлен всеми типами клеток (темные – 50 %, светлые – 30 %, переходные – 10 %, полутемные – 10 %). Усиленная трансформация одних клеток в другие свидетельствует о повышении скорости оборачиваемости клеточного цикла, что, очевидно, также имеет в принятых условиях приспособительное значение. Процесс «просветления» темных кардиомиоцитов сопровождается постепенным нарастанием количества свободной саркоплазмы и разобщением структурных компонентов. В ядрах происходит превращение гетерохроматина в диффузный хроматин. В саркомерах появляются изотропные диски, а протофибриллы располагаются более рыхло.

Становится заметной саркотубулярная система. Так возникают полутемные клетки, которые по мере продвижения по клеточному циклу трансформируются в светлые с ортодоксальными митохондриями и просветленным матриксом. Указанные структурные сдвиги свидетельствуют о вступлении «покоящихся» темных и полутемных кардиомиоцитов в фазу повышенной функциональной активности.

Сократительную функцию миокарда в конце фазы резистентности и начале стадии истощения иммобилизационного стресса (48 ч опыта) обеспечивают главным образом светлые и отчасти переходные клетки. В данный период по сравнению с фазой напряжения (1—12 ч опыта) количество светлых клеток в левом желудочке существенно снижено. Соответственно падающая на них рабочая нагрузка пропорционально увеличивается, что приводит к повышенному износу контрактильного и митохондриального аппарата светлых кардиомиоцитов. Увеличению степени деструкции сократительных элементов левого желудочка способствует ухудшение их кислородного обеспечения в результате спазма интрамуральных артериол, вызванного сокращением гладкомышечного слоя сосудистой стенки (рис. I-12). Волна нарушения микроциркуляции захватывает и капиллярное русло.

Рис. I-12. То же, что и на рис. I-11. Конец фазы резистентности – начало фазы истощения (48 ч опыта).

Спазм интрамуральных артериол. 71 000 Рис. I-13. То же, что и на рис. I-11. Конец фазы резистентности – начало фазы истощения (48 ч опыта).

Сдавливание капилляров пересократившимися темными клетками. 71 000 Повсеместно наблюдаются явления гемостаза, обусловленные сдавливанием капилляров пересократившимися темными клетками (рис. I-13) и гипертрофированными перицитами, которые в сложной связи своих отростков охватывают эндотелиальную трубку в виде своеобразной муфты (рис. I-14). Свой вклад в сужение просвета капилляров в данный срок опыта вносят и сами эндотелиальные клетки, способные к периодическому набуханию под влиянием нервных импульсов. В схеме двигательной иннервации кровеносных капилляров важная роль отводится перицитам, где находятся окончания симпатических нервов, которые воспринимают, трансформируют и далее передают нервный импульс через свои отростки на эндотелиальную клетку по типу электрического синапса [168]. Если принять гипотезу электрического синапса, то из рис. І-15 видно, что последний может возникать и без посредничества перицитов, поскольку нервные терминали непосредственно граничат с эндотелиальными клетками.

Рис. I-14. То же, что и на рис. I-11. Конец фазы резистентности – начало фазы истощения (48 ч опыта).

Сдавливание капилляров гипертрофированными перицитами. 71 000 Рис. I-15. То же, что и на рис. I-11. Конец фазы резистентности – начало фазы истощения (48 ч опыта).

Окончания нервных терминалей. 71 000 Согласно гипотезе, нервный импульс, направленный в сторону эндотелиальной клетки, вызывает деполяризацию ее плазмалеммы, что может способствовать потере или накоплению клеткой жидкости, которая, по всей вероятности, проникает через микропоры в плазмалемме [168]. По мнению автора гипотезы, на электронномикроскопических снимках и при прижизненных наблюдениях можно обнаружить набухшие эндотелиальные клетки, которые полностью закрывают просвет капилляра. Вслед за набуханием эндотелиальной клетки через несколько секунд можно видеть ее спадение. Такая периодичность, ведущая в первом случае к сужению просвета кровеносного капилляра и освобождению просвета для движения крови во втором случае, физиологически оправдана и не может быть осуществлена без участия нервной системы.

Фаза истощения (72 ч опыта). В терминальной стадии иммобилизационного стресса типовая гетерогенность кардиомиоцитов практически исчезает. Как и в самом начале развития стрессорной реакции, в левом желудочке в этот период доминируют светлые клетки (90 %; 10 % составляют полутемные клетки), что, очевидно, является результатом длительной перегрузки ультраструктурных элементов сердца. Однако в отличие от фазы напряжения (1—12 ч опыта), где светлые клетки были в основном однородными и различались только по степени набухания, здесь отмечается их выраженная внутрипуловая гетерогенность, обусловленная различной выраженностью деструкции митохондриального и контрактильного аппарата. В сарколемме таких кардиомиоцитов появляются множественные дефекты. На отдельных участках, особенно в тех, к которым близко прилежат капилляры, сарколемма становится размытой. В большинстве мышечных клеток отмечается отек саркоплазмы, особенно в субсарколемной зоне. Наряду с набухшими, но сохранившими нативную ультраструктуру кардиомиоцитами (30 %) – светлые клетки 1-го типа (рис.

I-16) – появляются светлые клетки 2-го типа, в которых почти все митохондрии разрушены (20 %). Миофибриллы в них в основном фрагментированы на уровне дисков I, но имеются и большие участки гомогенизации, разволокнения и разрыва миофиламентов. Многие диски Z смещаются по отношению друг к другу в лежащих рядом миофибриллах (рис. I-17). В светлых клетках 3-го типа (40 %) большинство митохондрий в состоянии либо выраженного, либо умеренного набухания, матрикс их очагово просветлен. Резко уменьшено количество крист, имеющиеся кристы фрагментированы, хаотично расположены, в центре митохондрий они превращаются в гомогенную слабоосмиофильную массу. Наружные мембраны митохондрий теряют двухконтурность либо на всем протяжении, либо на значительных участках. Немало митохондрий полностью гомогенизированных, а также резко набухших, лишенных матрикса и крист.

Рис. I-16. Миокард левого желудочка крысы при иммобилизационном стрессе. Фаза истощения (72 ч опыта). Деструктивные кардиомиоциты первого типа.

Рис. I-17. То же, что и на рис. I-16. Фаза истощения (72 ч опыта). Деструктивные кардиомиоциты второго типа. 71 000 Примечательна мозаичность изменения митохондрий: в одной и той же клетке имеются митохондрии с различной степенью изменений – от умеренного набухания и неравномерного расположения крист до полной деструкции органелл (рис. I-18). В миофибриллах отмечается появление множественных участков деструкции. На продольных срезах отчетливо видно, что вначале происходит расплавление тонких миофиламентов. Затем возникают очаги их деструкции на протяжении нескольких саркомеров. Разделительные диски Z исчезают. В этих участках сохраняются лишь обрывки толстых миофиламентов и остатки дисков I (рис. I-18). В других участках происходит гомогенизация миофибрилл. В очагах гомогенизации заметны обрывки миофиламентов, которые затем подвергаются расплавлению. Наблюдается значительная вариабельность в степени повреждения между различными мышечными клетками этого типа. В некоторых кардиомиоцитах в областях разрушения миофибрилл видна гомогенная масса миофиламентов, в то время как другие области имели нормальный или почти нормальный вид. В очагах тяжелого повреждения клетки спектр изменения был довольно широким – от конденсации до полного лизиса миофибрилл.

Рис. I-18. То же, что и на рис. I-16. Фаза истощения (72 ч опыта). Деструктивные кардиомиоциты третьего типа. 71 000 Рис. I-19. То же, что и на рис. I-16. Фаза истощения (72 ч опыта). Лизис кардиомиоцитов. 71 000 На периферии таких поврежденных участков миофибриллы часто пересокращены и подвержены процессу гомогенизации и лизиса (рис. I-19). Сопряжение кардиомиоцитов нарушается за счет расхождения плазматических мембран, образующих вставочные диски и их фрагментации (рис. I-19), что характерно для декомпенсации сердца, сопровождающейся развитием фибрилляции желудочков [122]. Показателем функциональной перегрузки светлых кардиомиоцитов 3-го типа является резкое расширение канальцев саркоплазматического ретикулума вплоть до образования крупных вакуолей и цистерн (рис. I-18). Повреждения саркотубулярной системы, играющей важную роль в распространении возбуждения по миокардиальной клетке, могут привести к замедлению распространения импульса и возникновению блоков проведения, т. е. к прогрессированию возникшей в миокарде фибрилляции [122]. Кроме того, перерастяжение и частичное разрушение канальцев саркотубулярной системы может стать основой ослабления сократительной силы сердца, так как приходящее в миофибриллы возбуждение не будет реализовываться их сокращением. Такой механизм может лежать в основе развития сердечной недостаточности. Существуют три основные причины, обусловливающие сердечную недостаточность: 1) нарушение функции саркоплазматического ретикулума поглощать, накапливать 2+ и отдавать Са, участвующий в акте сокращения,

2) дефицит энергии и 3) функциональная несостоятельность контрактильного аппарата кардиомиоцитов [164]. Морфологически сочетание действия этих негативных факторов в принятых условиях документируется резким расширением канальцев саркоплазматического ретикулума, деструкцией митохондрий и миофибрилл (рис. I-17, I-18). По сути дела тот же сценарий развития стрессорных кардиопатий, предложенный Ф. Меерсоном, заложен в механизме «кальциевой триады»: накопление Са в кардиомиоцитах изза неполадок в системе внутриклеточного транспорта катиона может привести к недостаточности сердца в результате возникновения кальциевых контрактур, активации фосфолипаз и особенно протеаз, разрушающих диски миофибрилл, и нарушения окислительного 2+ фосфорилирования в нагруженных Са митохондриях [98].

Действительно, как видно из рис. I-18, в светлых кардиомиоцитах 3-го типа налицо типичные признаки кальциевого повреждения ультраструктуры: имеются контрактурные полосы пересокращения миофибрилл с гомогенизацией содержимого, лизис саркомеров, начинающийся с Z дисков, накопление в межкристном пространстве сильно набухших митохондрий осмиофильных включений ортофосфата кальция. Считается, что перегрузка миокардиальных клеток кальцием является главной причиной альтеративных сдвигов не только при классических кальциевых (адреналиновых, изопротереноловых) некрозах, но и при гиперфункции, гипертрофии, ишемии (неглубокой), гипоксии, стрессорных повреждениях, большинстве некоронарогенных болезней сердца [246].

Повреждения сарколеммы и изменения саркоплазматического ретикулума могут приводить к сбоям в работе кальциевой помпы и Na-Ca-ионообменного механизма [97], т. е. к прогрессирующему накоплению содержания катиона в кардиомиоцитах в результате проникновения избыточного Са внутрь клетки из межклеточного пространства через образовавшиеся дефекты в плазмалемме [246], блокирования процесса откачки кальция из клетки и слабости механизмов его внутриклеточной утилизации. В итоге в клетках образуется массивная кальциевая перегрузка [239], которая морфологически проявляется накоплением в матриксе митохондрий электронноплотных гранулированных осадков фосфата кальция [239], появлением участков пересокращения саркомеров и расширением канальцев саркоплазматического ретикулума [167]. С указанными изменениями связывают затруднение в проведении нервных импульсов, нарушения ионного транспорта, развитие незавершенной диастолы [97] и снижение сократимости миокарда при хроническом дефиците насосной функции сердца [311]. Независимо от конкретной причины накопления избыточного Са в саркоплазме этот процесс неизбежно приводит к одному и тому же эффекту – несостоятельности энергообеспечения кардиомиоцитов за счет снижения генерации энергии в митохондриях, гиперактивации Са-зависимых АТ-Фаз и истощению АТФ в местах его использования [218], что составляет патогенетическую основу развития сердечной недостаточности.

Ядра светлых кардиомиоцитов всех 3 типов – округлые, без признаков маргинации хроматина, которую обычно расценивают как показатель ухудшения дренажной функции саркоплазмы [109]. В межклеточных и перикапиллярных пространствах возле светлых клеток всегда много однооболочечных митохондрий с гомогенизированным матриксом, разнокалиберных первичных и вторичных лизосом, которые служат морфологическим маркером стресс-реакции [251].

В завершающей стадии иммобилизационного стресса (72 ч опыта) в миокарде левого желудочка встречаются три типа капилляров. Просветы капилляров первого типа широкие, содержат эритроциты (рис. I-16). Цитоплазматические отростки эндотелиальных клеток гофрированы, пиноцитоз умеренный.

Просветы капилляров второго типа, тесно прилегающих к разрушающимся кардиомиоцитам, почти полностью закрыты набухшими эндотелиальными клетками или эритроцитарными тромбами (результат гемостаза), в их ядрах количество хроматина увеличено (рис. I-19). Наконец, третий тип капилляров отличается тем, что эндотелиальные клетки здесь образуют длинные цитоплазматические клапаны, куда часто смещаются гиперхромные ядра. Эти отростки достигают противоположной стенки капилляра и делят его просвет на несколько полостей. Вокруг таких капилляров очень много поврежденных митохондрий, различного типа лизосом, эритроцитов (рис. I-20). Базальный слой капилляров первого и третьего типа не изменен, а второго – сужен.

По сравнению со стадией относительного покоя (контрольные животные), где в клеточном спектре левого желудочка сердца преобладают полутемные кардиомиоциты, содержанием каждой стадии иммобилизационного стресса является некий главный (определяющий энергетику) процесс, который лимитирует появление преобладающего типа клеток: в фазу напряжения – набухание (светлые); в фазу резистентности – деление (переходные) и регенерация (темные); в фазу истощения – деструкция (деструктивные клетки). Трансформация одного типа клеток в другой в рамках замкнутого жизненного цикла кардиомиоцитов: светлые – переходные – темные – полутемные – светлые является проявлением механизма стабилизации энергетики при прогрессировании гиперфункции сердца в условиях непрекращающегося раздражения. Деструктивные светлые клетки – это необратимо поврежденные кардиомиоциты, сошедшие с орбиты жизненного цикла.

Набухание митохондрий в первой стадии стресса (1– 12 ч опыта) является наиболее быстрой реакцией этих органелл на те требования, которые предъявляются к клетке новыми условиями функционирования.

Быстрая трата энергии приводит к изменению соотношения компонентов адениловой системы внутри митохондрий, что, в свою очередь, обусловливает изменение ионного баланса по обе стороны митохондриальных мембран и степень гидратации митохондрий.

Поступление в них воды вызывает увеличение объема митохондрий, расправление крист и общее увеличение энергообразующей поверхности. Выработка энергии усиливается и происходит восстановление нарушенного энергетического гомеостаза клетки [160]. Следовательно, набухание митохондрий можно расценивать как показатель их гиперфункции. Если оно превышает критический уровень, выход энергии резко снижается в результате перерастяжения внутренних митохондриальных мембран и пространственного разобщения энергообразующих комплексов. Чрезмерное набухание митохондрий в фазе истощения иммобилизационного стресса (72 ч опыта) следует расценивать как переход адаптивно-приспособительной реакции, мобилизующей для контрактильных элементов миокарда дополнительные энергетические резервы, в патогенетическую, приводящую к необратимым нарушениям структурной целостности органелл и их гибели (рис. І-17).

Степень набухания митохондрий регулируется прежде всего уровнем оксигенации клетки. У стрессированных животных площадь капиллярного русла миокарда заметно снижается в начальную (1 ч – фаза тревоги) и терминальную (72 ч – фаза истощения) стадию иммобилизационного стресса. В эти же сроки на начальном и завершающем пиках содержания стресс-гормонов в крови (катехоламинов [121] и 11ОКС [16]) в кардиомиоцитах наблюдается набухание митохондрий, особенно выраженное в фазу истощения, что указывает на аварийную гиперфункцию органелл в условиях дефицита кислорода, когда осуществляется энергообеспечение только специализированной функции сократительных клеток.



Pages:   || 2 |



Похожие работы:

«Теория и практика управления 47 УДК 338.482 ГБГ ОЭВОЛЮЦИЯ ТЕОРЕТИЧЕСКИХ ПОДХОДОВ К ОПРЕДЕЛЕНИЮ ПОНЯТИЯ РН А П. Ь "ТУРИЗМ" Горбань Г.П. В статье рассматривается дефиниция "туризм" как системная научная категория. Выделяются основные подходы к трактовке понятия туризм, такие как функциональн...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "ОМСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ П.А.СТОЛЫПИНА" (ФГБОУ ВО Омский ГАУ) Омский аграрный техникум КОНСТИТУЦИОННОЕ ПРАВО МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ ПР...»

«1. Цели и задачи дисциплины Цель изучения дисциплины состоит в получении знаний в сфере теории и практики рекламной деятельности. Рекламоведение аккумулирует теоретические и практические знания о различных аспектах рекламно-инфор...»

«Лариса Юрьевна Павлова Сборник дидактических игр по ознакомлению с окружающим миром. Для работы с детьми 4-7 лет Серия "Библиотека программы "От рождения до школы"" Текст предоставлен правообладателем http://www.litres.ru/pages/biblio_book/?art=5810157 Сборник дидактических и...»

«Национальный правовой Интернет-портал Республики Беларусь, 02.03.2013, 7/2280 ПРИКАЗ ВЫСШЕЙ АТТЕСТАЦИОННОЙ КОМИССИИ РЕСПУБЛИКИ БЕЛАРУСЬ 17 декабря 2012 г. № 150 О программе-минимум кандидатского экзамена На основании решения коллегии Высшей аттестационной комиссии Республики Беларусь от 21 ноября 2012 г. № 21/16 и в с...»

«вых прокуроров, судей, судебных заседателей, если многие из них мыслят на уровне бытовых стереотипов? Здесь нужны простые и убедительные памятки и справки, семинары и профессиональная специализация по экстремизму. Иначе судья и прокурор оказываются беспомощными пер...»

«ТРУДЫ ОРЕНБУРГС КОГО ИНСТИТУТА (фили ал а) М ГЮА_ ( в ы п у с к три н а д ц а ты й) Оренбург – 2011 ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИ Е ВЫСШЕГО ПРОФЕССИОНАЛЬ НОГО ОБРАЗОВАНИЯ "МОСКОВСКАЯ ГОСУДАРСТВЕННАЯ ЮРИДИЧЕСКАЯ АКАДЕМИЯ ИМЕНИ О.Е. КУТАФИНА" ОРЕНБУРГСК...»

«А. Я. Петров Трудовой договор Учебно-практическое пособие для магистров Допущено Министерством образования и науки Российской Федерации в качестве учебного пособия для студентов высших учебных заведений, обучающихся...»

«Б.Ф. Мартынов "МАЯТНИК" КАЧНУЛСЯ ВПРАВО? Перемены, происходящие в странах Латинской Америки, заставляют некоторых комментаторов рассуждать о грядущем "поправении" стран этого региона, о вероятном охлажденииих связей с Россией и чуть ли ни о неизбежном возвращении их под "зонтик" Соединенных Штатов. Напомним: в...»

«КОНСТИТУЦИЯЛЫ ЖНЕ ХАЛЫАРАЛЫ Ы КОНСТИТУЦИОННОЕ И МЕЖДУНАРОДНОЕ ПРАВО CONSTITUTIONAL AND INTERNATIONAL LAW ГУ УДК 342.9 О.Л.Казанцева р Алтайский государственный университет, Барнаул, Россия (E-mail: verwaltung@mail.ru) Ка Актуальные вопросы а...»

«ОАО "НТЦ ЕЭС"Согласовано: Председатель Закупочной комиссии _ Е.Г. Смирнов Куратор закупки _ А.Г.Курбатов ДОКУМЕНТАЦИЯ ПО ЗАКУПКЕ У ЕДИНСТВЕННОГО ПОСТАВЩИКА НА ПРАВО ЗАКЛЮЧЕНИЯ ДОГОВОРА на участие сотрудников ОАО НТЦ ЕЭС в 46-й сессии СИГРЭ г. Санкт-Петербург 2016г Исполнитель: Щедри...»

«Блаженный Феодорит Кирский Сокращенное изложение Божественных догматов Текст предоставлен правообладателем http://www.litres.ru/pages/biblio_book/?art=9740404 Сокращенное изложение Божественных догматов / Вст. статья, примеч. П.К. Доброцветова.: Сибирская Благозвонн...»

«1. Приказ о назначении ответственного за организацию обработки персональных данных ПРОЕКТ ПРИКАЗА О назначении ответственн(ых)ого за организацию обработки персональных данных _ В соответствии с пунктом 1 постановления Правительства РФ от 21....»

«Київський національний університет імені Тараса Шевченка Юридичний факультет Рада молодих науковців До 180-річчя Київського національного університету імені Тараса Шевченк...»

«МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №1 С. АРЗГИР АРЗГИРСКОГО РАЙНА СТАВРОПОЛЬСКОГО КРАЯ ПУБЛИЧНЫЙ ДОКЛАД "О состоянии и результатах деятельности муниципального бюджетного общеобразовательного учреждения средней общеобразовательной школы № 1 с....»

«Муниципальное бюджетное образовательное учреждение дополнительного образования детей "Сампурский детско-юношеский центр" Аналитический отчет март 2015 г. Аналитический отчёт о результатах самообследования муниципального бюджетного образовательного учреждения дополнитель...»

«Национальный правовой Интернет-портал Республики Беларусь, 09.01.2015, 6/1463 РЕШЕНИЕ КОНСТИТУЦИОННОГО СУДА РЕСПУБЛИКИ БЕЛАРУСЬ 24 декабря 2014 г. № Р-966/2014 О соответствии Конституции Республики Беларусь Закона Республики Беларусь "О бюджете государственного в...»

«И.Б. Новицкий РИМСКОЕ ПРАВО Учебник Москва Волтерс Клувер 2009 УДК 340(075.8) УДК 347(37)(07) ББК 67.3(0)323я73 ББК Н73 67.3(0)323я7 Н73 Автор Новицкий Иван Борисович, доктор юридических наук, профессор Сведения об авторе: Новицкий Иван Борисович —профессор Московского государственного университета. Но...»

«Тематика семинарских занятий по гражданскому праву (особенная часть) для слушателей ИПКиПК, 3 этап (8 часов) Подготовила Т.Д. Трамбачева Семинарское занятие № 1 Тема 1. Договор купли-продажи (2 часа) Осн...»

«АДМИНИСТРАЦИЯ БЕЛОГОРСКОГО РАЙОНА РЕСПУБЛИКИ КРЫМ ПОСТАНОВЛЕНИЕ 10 апреля 2QI5 года № 55г. Белогорск Об утверждении административного регламента, по предоставлению муниципальной услуг...»









 
2017 www.book.lib-i.ru - «Бесплатная электронная библиотека - электронные ресурсы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.